Answer on Question \#79907 - Math - Linear Algebra

Question

Find the orthogonal canonical reduction of the quadratic form $x^{2}+y^{2}+z^{2}$.

Solution

A quadratic form in 3 variables $Q(x, y, z)$ is a function of the form $Q(x, y, z)=q_{x x} x^{2}+2$. $q_{x y} x y+2 \cdot q_{x z} x z+q_{y y} y^{2}+2 \cdot q_{y z} x y+q_{z z} z^{2}$. It is known that by changing the system of coordinates $(x, y, z) \rightarrow\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ in some way, any quadratic form can be transformed to a canonical form $Q(x, y, z)=D\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=d_{x^{\prime} x^{\prime}} x^{\prime 2}+d_{z^{\prime} z^{\prime}} y^{\prime 2}+d_{z^{\prime} z^{\prime}} z^{\prime 2}$. The reduction is called orthogonal if the transformation is defined by an orthogonal matrix.
In the case of this problem, the quadratic form is already a linear combination of the squares of the variables. And the trivial transformation is defined by an orthogonal matrix, i.e. the identity matrix.

Answer:

The quadratic form $x^{2}+y^{2}+z^{2}$ is a orthogonal canonical form.

