Answer on Question \#79902 - Math - Calculus

Question

Find domain and range of the function $f(x)=\frac{1}{\left|x^{2}-4\right|}$.

Solution

Solve to find the value of x that makes the expression $f(x)=\frac{1}{\left|x^{2}-4\right|}$ undefined. So,

$$
\begin{aligned}
& \left|x^{2}-4\right|=0, \\
& x^{2}-4=0, \\
& x^{2}=4, \\
& x= \pm \sqrt{4}, \\
& x= \pm 2 .
\end{aligned}
$$

The domain is all values of x that make the expression defined. Therefore, the domain is $(-\infty,-2) \cup(-2,2) \cup(2, \infty)$.

The range is the set of all valid y values. Since $\left|x^{2}-4\right| \geq 0, y \geq 0$. Note that $y \neq 0$. Consider any $y>0$. Then

$$
\begin{aligned}
& y=\frac{1}{\left|x^{2}-4\right|},\left|x^{2}-4\right|=\frac{1}{y}, \\
& x^{2}-4= \pm \frac{1}{y}, x^{2}=4 \pm \frac{1}{y} .
\end{aligned}
$$

So, for $x^{2}=4+\frac{1}{y}$ we have that $x=\sqrt{4+\frac{1}{y}}$.

Hence, the range is $(0, \infty)$.

Answer: the domain is $(-\infty,-2) \cup(-2,2) \cup(2, \infty)$; the range is $(0, \infty)$.

