Question

Find domain and range of the function $f(x) = \frac{1}{|x^2 - 4|}$.

Solution

Solve to find the value of x that makes the expression $f(x) = \frac{1}{|x^2 - 4|}$ undefined. So,

 $|x^{2}-4|=0,$ $x^{2}-4=0,$ $x^{2}=4,$ $x=\pm\sqrt{4},$ $x=\pm2.$

The domain is all values of x that make the expression defined. Therefore, the domain is $(-\infty, -2) \cup (-2, 2) \cup (2, \infty)$.

The range is the set of all valid y values. Since $|x^2-4| \ge 0$, $y \ge 0$. Note that $y \ne 0$. Consider any y > 0. Then

$$y = \frac{1}{|x^2 - 4|}, \ |x^2 - 4| = \frac{1}{y},$$
$$x^2 - 4 = \pm \frac{1}{y}, \ x^2 = 4 \pm \frac{1}{y}.$$

So, for
$$x^2 = 4 + \frac{1}{y}$$
 we have that $x = \sqrt{4 + \frac{1}{y}}$.

Hence, the range is $(0,\infty)$.

Answer: the domain is $(-\infty, -2) \cup (-2, 2) \cup (2, \infty)$; the range is $(0, \infty)$.

Answer provided by https://www.AssignmentExpert.com