Answer on Question \#79881 - Math - Calculus Question

Trace the curve:

$$
x^{3}+y^{3}=3 a x^{2} .
$$

Solution

If $a=0$

$$
\begin{gathered}
x^{3}+y^{3}=0 \\
(x+y)\left(x^{2}-x y+y^{2}\right)=0 \\
y=-x, x \in R
\end{gathered}
$$

The function $y=-x$, which is just a straight line with a slope of -1 and y-intercept at the origin.
If $a \neq 0$

1. Domain: $(-\infty, \infty)$
2. Symmetry

The curve is not symmetrical about the y-axis.
The curve is not symmetrical about the x-axis.
The curve is not symmetrical in opposite quadrants.
The curve is not symmetrical about the line $y=x$.
3. Origin.

The curve passes through the origin

$$
x=0=>y=0
$$

The equations of the tangents to the curve at the origin are obtained by equating the lowest degree terms in x and y in the given equation to zero.
Lowest degree term

$$
\begin{gathered}
3 a x^{2}=0, a \neq 0 \\
x=0
\end{gathered}
$$

The tangent: $x=0$.
The tangents are real and distinct.
The origin is cusp of the first kind (simple cusp).
4. Intersection with the coordinate axes.

$$
\begin{aligned}
& y-\text { intercept: } x=0=>y=0, \operatorname{point}(0,0) \\
& x-\text { intercept: } y=0=>x^{3}+0=3 a x^{2}, a \neq 0 \\
& x^{2}(x-3 a)=0 \\
& x=0 \text { or } x=3 a \\
& \operatorname{point}(0,0), \operatorname{point}(3 a, 0)
\end{aligned}
$$

5. First derivative

Take derivative with respect to x of both sides of the equation and use the Chain rule
$\frac{d}{d x}\left(x^{3}+y^{3}\right)=\frac{d}{d x}\left(3 a x^{2}\right)$
$3 x^{2}+3 y^{2} \frac{d y}{d x}=6 a x$
$\frac{d y}{d x}=\frac{2 a x-x^{2}}{y^{2}}$
We have the vertical tangent $x=0$ at the $\operatorname{point}(0,0)$.
We have the vertical tangent $x=3 a$ at the $\operatorname{point}(3 a, 0)$.
6. Asymptote(s)
$x^{3}+y^{3}=3 a x^{2}$
$y=\sqrt[3]{3 a x^{2}-x^{3}}$
There is no vertical asymptote.
There is no horizontal asymptote.

$$
\begin{aligned}
& m=\lim _{x \rightarrow \pm \infty} \frac{y}{x}=\lim _{x \rightarrow \pm \infty} \frac{\sqrt[3]{3 a x^{2}-x^{3}}}{x}=\lim _{x \rightarrow \pm \infty} \sqrt[3]{\frac{3 a x^{2}}{x^{3}}-\frac{x^{3}}{x^{3}}}=\lim _{x \rightarrow \pm \infty} \sqrt[3]{\frac{3 a}{x}-1}= \\
& =\sqrt[3]{0-1}=-1 \\
& b=\lim _{x \rightarrow \pm \infty}(y-(-x))=\lim _{x \rightarrow \pm \infty}\left(\sqrt[3]{3 a x^{2}-x^{3}}+x\right)= \\
& =\lim _{x \rightarrow \pm \infty}\left(\left(\sqrt[3]{3 a x^{2}-x^{3}}+x\right)\left(\frac{\left(\sqrt[3]{3 a x^{2}-x^{3}}\right)^{2}-x \sqrt[3]{3 a x^{2}-x^{3}}+x^{2}}{\left(\sqrt[3]{3 a x^{2}-x^{3}}\right)^{2}-x \sqrt[3]{3 a x^{2}-x^{3}}+x^{2}}\right)\right)= \\
& =\lim _{x \rightarrow \pm \infty}\left(\frac{3 a x^{2}-x^{3}+x^{3}}{\left(\sqrt[3]{3 a x^{2}-x^{3}}\right)^{2}-x \sqrt[3]{3 a x^{2}-x^{3}}+x^{2}}\right)= \\
& =\lim _{x \rightarrow \pm \infty}\left(\frac{\frac{3 a x^{2}}{x^{2}}}{\left(\sqrt[3]{\frac{3 a x^{2}}{x^{3}}-\frac{x^{3}}{x^{3}}}\right)^{2}-\frac{x^{3}}{x} \sqrt[3]{\frac{3 a x^{2}}{x^{3}}-\frac{x^{3}}{x^{3}}}+\frac{x^{2}}{x^{2}}}\right)= \\
& =\lim _{x \rightarrow \pm \infty}\left(\frac{3 a}{\left(\sqrt[3]{\frac{3 a}{x}-1}\right)^{2}-\sqrt[3]{\frac{3 a}{x}-1}+1}\right)=\frac{3 a}{(\sqrt[3]{0-1})^{2}-\sqrt[3]{0-1}+1}=a
\end{aligned}
$$

There is slant (oblique) asymptote

$$
y=-x+a
$$

7. Increasing and decreasing
$\frac{d y}{d x}=\frac{2 a x-x^{2}}{y^{2}},-1<x \leq 3$
$\frac{d y}{d x}=0 \Rightarrow>\frac{2 a x-x^{2}}{y^{2}}=0$
$2 a x-x^{2}=0, y \neq 0$
If $x=0, y=0, \frac{d y}{d x}$ is undefined
We take $x=2 a$
$\left.y\right|_{x=2 a}=\sqrt[3]{3 a(2 a)^{2}-(2 a)^{3}}=\sqrt[3]{4} a$
$a>0$
If $x<0, \frac{d y}{d x}<0, y$ decreases
If $0<x<2 a, \frac{d y}{d x}>0, y$ increases
If $x>2 a, \frac{d y}{d x}<0, y$ decreases
The function y has the local maximum with value of $\sqrt[3]{4} a$ at $x=2 a$.
The function y has the local minimum with value of 0 at $x=0$.
$a<0$
If $x<2 a, \frac{d y}{d x}<0, y$ decreases
If $2 a<x<0, \frac{d y}{d x}>0, y$ increases
If $x>0, \frac{d y}{d x}<0, y$ decreases
The function y has the local maximum with value of 0 at $x=0$.
The function y has the local minimum with value of $\sqrt[3]{4} a$ at $x=2 a$.
8. Sketch the graph

