Answer on Question \#79776 - Math - Differential Equations

Question

Solve the equation

$$
x \frac{d y}{d x}-a y=x+1
$$

where a is a constant.
a) $y=\frac{x}{1-a}-\frac{1}{a}+C x$;
b) $y=\frac{x}{1-a}+\frac{1}{a}+C x$;
c) $y=\frac{x}{1+a}-\frac{1}{a}+C x$;
d) $y=-\frac{x}{1-a}-\frac{1}{a}+C x$.

Solution

Let's write the equation in the form:

$$
\frac{d y}{d x}-\frac{a}{x} y=1+\frac{1}{x}
$$

It's a first order linear differential equation, in turn that means it looks like

$$
\frac{d y}{d x}+P(x) y=Q(x)
$$

with $P(x)=-\frac{a}{x}$ and $Q(x)=1+\frac{1}{x}$.
It can be integrated in three ways.

1) The first way is using auxiliary function.

Let

$$
y=u v
$$

where $u=u(x)$ and $v=v(x)$ are the auxiliary functions.
Then

$$
\frac{d y}{d x}=\frac{d u}{d x} v+u \frac{d v}{d x}
$$

So we have:

$$
\frac{d u}{d x} v+u \frac{d v}{d x}-\frac{a}{x} u v=1+\frac{1}{x}
$$

or

$$
\frac{d u}{d x} v+u\left(\frac{d v}{d x}-\frac{a}{x} v\right)=1+\frac{1}{x}
$$

Since one of the auxiliary functions can be chosen arbitrarily, let's choose a function v such that it will satisfy the condition:

$$
\frac{d v}{d x}-\frac{a}{x} v=0
$$

So we have

$$
\frac{d v}{d x}=\frac{a}{x} v .
$$

It's a separable equation what can be easily integrated:

$$
\begin{aligned}
\int \frac{d v}{v} & =a \int \frac{d x}{x} \\
\ln |v| & =a \ln |x| \\
v & =x^{a} .
\end{aligned}
$$

Substitute the expression for the function v in equation:

$$
\frac{d u}{d x} x^{a}=1+\frac{1}{x}
$$

or

$$
\frac{d u}{d x}=\frac{1}{x^{a}}+\frac{1}{x^{a+1}} .
$$

It's a separable equation so we can integrate it:

$$
\begin{gathered}
\int d u=\int\left(\frac{1}{x^{a}}+\frac{1}{x^{a+1}}\right) d x ; \\
u=\frac{x^{1-a}}{1-a}-\frac{x^{-a}}{a}+C=\frac{x}{(1-a) x^{a}}-\frac{1}{a x^{a}}+C, \quad \text { where } C=\text { const. }
\end{gathered}
$$

After reverse replacement we have a general solution of the given equation:

$$
y=\frac{x}{1-a}-\frac{1}{a}+C x^{a}, \quad \text { where } C=\text { const } .
$$

2) The second way is a use of an integrating factor

$$
\mu(x)=e^{\int P(x) d x} .
$$

The solution is then commonly written as

$$
y=\frac{1}{\mu(x)} \int \mu(x) Q(x) d x
$$

Determine the integrating factor:

$$
\mu(x)=e^{-a \int \frac{d x}{x}}=e^{-a \ln |x|}=x^{-a} .
$$

Then the solution is

$$
\begin{aligned}
y=x^{a} \int x^{-a}\left(1+\frac{1}{x}\right) d x= & x^{a} \int\left(\frac{1}{x^{a}}+\frac{1}{x^{a+1}}\right) d x=x^{a}\left(\frac{x^{1-a}}{1-a}-\frac{x^{-a}}{a}+C\right)= \\
& =\frac{x}{1-a}-\frac{1}{a}+C x^{a} .
\end{aligned}
$$

So the general solution of the given equation is

$$
y=\frac{x}{1-a}-\frac{1}{a}+C x^{a}, \quad \text { where } C=\text { const } .
$$

3) The third way is a use of the variation of constants method.

We start with the homogeneous equation:

$$
\frac{d y}{d x}-\frac{a}{x} y=0,
$$

which is a separable equation, so we can integrate it:

$$
\begin{gathered}
\int \frac{d y}{y}=a \int \frac{d x}{x} ; \\
\ln |y|=a \ln |x|+\ln C ; \\
y=C x^{a} .
\end{gathered}
$$

The idea of the variation of constants method is to replace constant C by a function $C(x)$. So we have:

$$
y=C(x) x^{a}
$$

and

$$
\frac{d y}{d x}=\frac{d C}{d x} x^{a}+C a x^{a-1}
$$

Substitute the expression for y and $\frac{d y}{d x}$ in the equation:

$$
\begin{gathered}
x\left(\frac{d C}{d x} x^{a}+C a x^{a-1}\right)-a C x^{a}=x+1 \\
\frac{d C}{d x} x^{a+1}+C a x^{a}-a C x^{a}=x+1 \\
\frac{d C}{d x} x^{a+1}=x+1
\end{gathered}
$$

The obtained equation is a separable equation and can be easily integrated:

$$
C(x)=\int\left(\frac{1}{x^{a}}+\frac{1}{x^{a+1}}\right) d x=\frac{x^{1-a}}{1-a}-\frac{x^{-a}}{a}+C_{1},
$$

and the general solution of the given equation is:

$$
y=\left(\frac{x^{1-a}}{1-a}-\frac{x^{-a}}{a}+C_{1}\right) x^{a}=\frac{x}{1-a}-\frac{1}{a}+C_{1} x^{a} .
$$

The result is evidently the same as what we found using a substitution (an auxiliary function) or an integrating factor.

Answer provided by https://www.AssignmentExpert.com

