Question. Let $A=\{1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9 ; 10\}$ and $B=\{1 ; 2 ; 3 ; 4\}$. Let R be the relation on $\mathcal{P}(A)$ defined by:

For any X, Y element in $\mathcal{P}(A), X R Y$ if and only if $X-B=Y-B$. How many equivalence classes are there? Explain.

Answer. Define a function f on $\mathcal{P}(A)$ by $f(X)=X-B$. Then $X R Y$ if and only if $f(X)=f(Y)$.

We will show that there is a one-to-one correspondence from R-equivalence classes to the range of f denoted by range (f). For every equivalence class with a representative X, let $f(X)$ correspond to this equivalence class. As every equivalence class has at least one representative, at least one element of range (f) corresponds to every equivalence class. If X and Y are representatives of the same equivalence class, then $X R Y, f(X)=f(Y)$, hence at most one element of range (f) corresponds to this equivalence class.

The range of f is $\mathcal{P}(A-B)$, as we will show.

- Assume that $X \subseteq A-B . X-B \subseteq X$. Every $x \in X$ does not belong to B (because $X \subseteq A-B$), so $x \in X-B$. Hence $f(X)=X-B=X$, and $X \in \operatorname{range}(f)$.
- Assume that $X \in \operatorname{range}(f)$. Then there is $Y \subseteq A$ such that $f(Y)=X$. Hence $X=Y-B$. Every element of X belongs to Y, hence it belongs to A, and does not belong to B, so $X \subseteq A-B$.
$A-B=\{5 ; 6 ; 7 ; 8 ; 9 ; 10\}$. The set $A-B$ has exactly 6 members. It follows that $\mathcal{P}(A-B)$ has exactly $2^{6}=64$ elements. Therefore, there are exactly $64 R$-equivalence classes.

