Answer on Question #79754 - Math - Discrete Mathematics August 13, 2018

Question. Let $A = \{1; 2; 3; 4; 5; 6; 7; 8; 9; 10\}$ and $B = \{1; 2; 3; 4\}$. Let R be the relation on $\mathcal{P}(A)$ defined by:

For any X, Y element in $\mathcal{P}(A)$, XRY if and only if X - B = Y - B. How many equivalence classes are there? Explain.

Answer. Define a function f on $\mathcal{P}(A)$ by f(X) = X - B. Then XRY if and only if f(X) = f(Y).

We will show that there is a one-to-one correspondence from R-equivalence classes to the range of f denoted by range(f). For every equivalence class with a representative X, let f(X) correspond to this equivalence class. As every equivalence class has at least one representative, at least one element of range(f) corresponds to every equivalence class. If X and Y are representatives of the same equivalence class, then XRY, f(X) = f(Y), hence at most one element of range(f) corresponds to this equivalence class.

The range of f is $\mathcal{P}(A-B)$, as we will show.

- Assume that $X \subseteq A B$. $X B \subseteq X$. Every $x \in X$ does not belong to B (because $X \subseteq A B$), so $x \in X B$. Hence f(X) = X B = X, and $X \in \operatorname{range}(f)$.
- Assume that $X \in \operatorname{range}(f)$. Then there is $Y \subseteq A$ such that f(Y) = X. Hence X = Y - B. Every element of X belongs to Y, hence it belongs to A, and does not belong to B, so $X \subseteq A - B$.

 $A - B = \{5; 6; 7; 8; 9; 10\}$. The set A - B has exactly 6 members. It follows that $\mathcal{P}(A - B)$ has exactly $2^6 = 64$ elements. Therefore, there are exactly 64 *R*-equivalence classes.