ANSWER on Question \#79736 - Math - Calculus QUESTION

Evaluate the integral

$$
\int_{0}^{1} \frac{\left(1-x^{4}\right)^{\frac{3}{4}}}{\left(1+x^{4}\right)^{2}} d x
$$

SOLUTION

To solve this problem, we recall the definition of the beta function

$$
B(x, y)=\int_{0}^{1} t^{x-1}(1-t)^{y-1} d t
$$

Or

$$
B(x, y)=\int_{0}^{\infty} \frac{t^{x-1}}{(t+1)^{x+y}} d t
$$

Let us try to bring the given integral to this form. We introduce a substitution

$$
t=\frac{1-x^{4}}{1+x^{4}}
$$

Let us see how to change the integrand and the boundaries of integration.

1. Integration limits.

$$
\begin{gathered}
x=0 \rightarrow t=\frac{1-0^{4}}{1+0^{4}}=1 \rightarrow x=0 \rightarrow t=1 \\
x=1 \rightarrow t=\frac{1-1^{4}}{1+1^{4}}=\frac{1-1}{1+1}=\frac{0}{2}=0 \rightarrow x=1 \rightarrow t=0
\end{gathered}
$$

2. Integrand.

$$
\begin{gathered}
t=\frac{1-x^{4}}{1+x^{4}} \rightarrow t\left(1+x^{4}\right)=1-x^{4} \rightarrow t+t x^{4}=1-x^{4} \rightarrow t x^{4}+x^{4}=1-t \rightarrow \\
x^{4}(t+1)=1-t \rightarrow x^{4}=\frac{1-t}{1+t} \rightarrow x=\left(\frac{1-t}{1+4}\right)^{\frac{1}{4}} \\
x=\left(\frac{1-t}{1+4}\right)^{\frac{1}{4}} \rightarrow d x=\frac{1}{4} \cdot\left(\frac{1-t}{1+t}\right)^{\frac{1}{4}-1} \cdot \frac{-1 \cdot(t+1)-1 \cdot(1-t)}{(1+t)^{2}} d t \rightarrow \\
d x=\frac{1}{4} \cdot\left(\frac{1-t}{1+t}\right)^{-\frac{3}{4}} \cdot \frac{-t-1-1+t}{(1+t)^{2}} d t \rightarrow d x=\frac{1}{4} \cdot\left(\frac{1-t}{1+t}\right)^{-\frac{3}{4}} \cdot \frac{-2}{(1+t)^{2}} d t \rightarrow
\end{gathered}
$$

$$
\begin{gathered}
d d x=-\frac{1}{2} \cdot\left(\frac{1-t}{1+t}\right)^{-\frac{3}{4}} \cdot \frac{d t}{(1+t)^{2}} \\
1-x^{4}=1-\frac{1-t}{1+t}=\frac{1+t-(1-t)}{1+t}=\frac{1+t-1+t}{1+t}=\frac{2 t}{1+t} \rightarrow 1-x^{4}=\frac{2 t}{1+t} \\
1+x^{4}=1+\frac{1-t}{1+t}=\frac{1+t+(1-t)}{1+t}=\frac{1+t+1-t}{1+t}=\frac{2}{1+t} \rightarrow 1+x^{4}=\frac{2}{1+t}
\end{gathered}
$$

Then

$$
\begin{gathered}
\frac{\left(1-x^{4}\right)^{\frac{3}{4}}}{\left(1+x^{4}\right)^{2}} d x=\frac{\left(\frac{2 t}{1+t}\right)^{\frac{3}{4}}}{\left(\frac{2}{1+t}\right)^{2}} \cdot\left(-\frac{1}{2}\right) \cdot\left(\frac{1-t}{1+t}\right)^{-\frac{3}{4}} \cdot \frac{d t}{(1+t)^{2}} \rightarrow \\
\frac{\left(1-x^{4}\right)^{\frac{3}{4}}}{\left(1+x^{4}\right)^{2}} d x=-\frac{1}{2} \cdot \frac{(2 t)^{\frac{3}{4}} \cdot(1+t)^{2}}{2^{2} \cdot(1+t)^{\frac{3}{4}}} \cdot \frac{(1-t)^{-\frac{3}{4}}}{(1+t)^{-\frac{3}{4}}} \cdot \frac{d t}{(1+t)^{2}} \rightarrow \\
\frac{\left(1-x^{4}\right)^{\frac{3}{4}}}{\left(1+x^{4}\right)^{2}} d x=-\frac{1}{2^{1}} \cdot \frac{2^{\frac{3}{4}} \cdot(t)^{\frac{3}{4}}}{2^{2}} \cdot \frac{(1-t)^{-\frac{3}{4}}}{(1+t)^{\frac{3}{4}-\frac{3}{4}}} \cdot \underbrace{(1+t)^{2}}_{=(1+t)^{0} \equiv 1} \underbrace{(1+t)^{2}}_{\equiv 1} \\
\frac{\left(1-x^{4}\right)^{\frac{3}{4}}}{\left(1+x^{4}\right)^{2}} d x=-2^{\frac{3}{4}-1-2} \cdot t^{\frac{3}{4}} \cdot(1-t)^{-\frac{3}{4}} \cdot d t=-2^{\frac{3}{4}-1-2} \cdot t^{\frac{7}{4}-1} \cdot(1-t)^{\frac{1}{4}-1} \cdot d t \rightarrow \\
\frac{\left(1-x^{4}\right)^{\frac{3}{4}}}{\left(1+x^{4}\right)^{2}} d x=-2^{\frac{3-4-8}{4}} \cdot t^{\frac{7}{4}-1} \cdot(1-t)^{\frac{1}{4}-1} \cdot d t \rightarrow \\
\frac{\left(1-x^{4}\right)^{\frac{3}{4}}}{\left(1+x^{4}\right)^{2}} d x=-2^{\frac{-9}{4}} \cdot t^{\frac{7}{4}-1} \cdot(1-t)^{\frac{1}{4}-1} \cdot d t
\end{gathered}
$$

Then

$$
\int_{0}^{1} \frac{\left(1-x^{4}\right)^{\frac{3}{4}}}{\left(1+x^{4}\right)^{2}} d x=\int_{1}^{0}-2^{\frac{-9}{4}} \cdot t^{\frac{7}{4}-1} \cdot(1-t)^{\frac{1}{4}-1} \cdot d t \rightarrow
$$

$\left[\begin{array}{c}\text { We use the next property of a definite integral } \\ \qquad \int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x\end{array}\right]$

Then

$$
\int_{0}^{1} \frac{\left(1-x^{4}\right)^{\frac{3}{4}}}{\left(1+x^{4}\right)^{2}} d x=-\left(-2^{-\frac{9}{4}}\right) \int_{0}^{1} t^{\frac{7}{4}-1} \cdot(1-t)^{\frac{1}{4}-1} \cdot d t \equiv 2^{-\frac{9}{4}} \cdot B\left(\frac{7}{4}, \frac{1}{4}\right)
$$

Conclusion,

$$
\int_{0}^{1} \frac{\left(1-x^{4}\right)^{\frac{3}{4}}}{\left(1+x^{4}\right)^{2}} d x=2^{-\frac{9}{4}} \cdot B\left(\frac{7}{4}, \frac{1}{4}\right)
$$

ANSWER:

$$
\int_{0}^{1} \frac{\left(1-x^{4}\right)^{\frac{3}{4}}}{\left(1+x^{4}\right)^{2}} d x=2^{-\frac{9}{4}} \cdot B\left(\frac{7}{4}, \frac{1}{4}\right)
$$

