ANSWER on Question \#79724 - Math - Differential Equations

QUESTION

differential equations in the form of $F(x, y, p), F(y / x, p)$ or differential equations containing $p(p=d y / d x)$

$$
\begin{gathered}
\text { 1. }(y-x p)^{2}=b^{2}+a^{2} p^{2} \\
\text { 2. } y^{2} p^{2}+4 y^{2}-(x+y p)^{2}=0
\end{gathered}
$$

SOLUTION

1. Solve equation $y^{2} p^{2}+4 y^{2}-(x+y p)^{2}=0$

$$
y^{2} p^{2}+4 y^{2}-(x+y p)^{2}=0 \rightarrow y^{2} p^{2}+4 y^{2}-x^{2}-2 x y p-y^{2} p^{2}=0 \rightarrow 2 x y p=4 y^{2}-x^{2} \rightarrow
$$

$$
2 x y p=4 y^{2}-x^{2} \left\lvert\, \div(x) \rightarrow 2 y p=\frac{4 y^{2}}{x}-x \rightarrow 2 y \cdot \frac{d y}{d x}=\frac{4 y^{2}}{x}-x\right. \text { is Bernoulli differential equation }
$$

(More information: https://en.wikipedia.org/wiki/Bernoulli differential equation)

In our case,

$$
2 y \cdot \frac{d y}{d x}=\frac{4 y^{2}}{x}-x \rightarrow\left[\begin{array}{c}
\text { We introduce the substitution } \\
y^{2}=u \rightarrow 2 y \cdot \frac{d y}{d x}=\frac{d u}{d x}
\end{array}\right] \rightarrow \frac{d u}{d x}=\frac{4 u}{x}-x \text { is inhomogeneous equation }
$$

1 STEP: Solve the homogeneous equation

$$
\frac{d u}{d x}=\frac{4 u}{x} \rightarrow \frac{d u}{u}=\frac{4 d x}{x} \rightarrow \ln |u|=4 \ln |x|+\ln |C| \rightarrow u=C \cdot x^{4}
$$

2 STEP: Solve the inhomogeneous equation.
We apply the method of variation of the constant.

$$
C=C(x) \rightarrow u=C(x) \cdot x^{4} \rightarrow \frac{d u}{d x}=\frac{d C}{d x} \cdot x^{4}+4 C x^{3}
$$

Then,

$$
\begin{aligned}
\frac{d u}{d x}=\frac{4 u}{x}-x \rightarrow & \frac{d C}{d x} \cdot x^{4}+4 C x^{3}=\frac{4 C \cdot x^{4}}{x}-x \rightarrow \frac{d C}{d x} \cdot x^{4}+4 C x^{3}=4 C x^{3}-x \rightarrow \\
& \frac{d C}{d x} \cdot x^{4}=-x \rightarrow d C=-\frac{d x}{x^{3}} \rightarrow C(x)=\frac{1}{2 x^{2}}+C
\end{aligned}
$$

Conclusion,

$$
u=C(x) \cdot x^{4}=x^{4} \cdot\left(\frac{1}{2 x^{2}}+C\right) \rightarrow u=\frac{x^{2}}{2}+C \cdot x^{4}
$$

Then,

$$
\left\{\begin{array}{c}
u=\frac{x^{2}}{2}+C \cdot x^{4} \\
u=y^{2}
\end{array} \rightarrow y^{2}=\frac{x^{2}}{2}+C \cdot x^{4} \rightarrow y= \pm \sqrt{\frac{x^{2}}{2}+C \cdot x^{4}}\right.
$$

2. Solve equation $(y-x p)^{2}=b^{2}+a^{2} p^{2}$

1 STEP: Let's look at this equation as an algebraic one. We express the variable y in terms of x, p, a, b.

$$
(y-x p)^{2}=b^{2}+a^{2} p^{2} \rightarrow y-x p= \pm \sqrt{b^{2}+a^{2} p^{2}} \rightarrow y=x p \pm \sqrt{b^{2}+a^{2} p^{2}}
$$

2 STEP: We differentiate the resulting equation, remembering that $p=d y / d x$

$$
\begin{gathered}
\left(\text { Note: } p^{\prime}=\frac{d p}{d x}\right) \\
\frac{d}{d x} \times \left\lvert\, y=x p \pm \sqrt{b^{2}+a^{2} p^{2}} \rightarrow \frac{d y}{d x}=p=\frac{d}{d x}\left(x p \pm \sqrt{b^{2}+a^{2} p^{2}}\right)=p+x p^{\prime} \pm \frac{2 a^{2} p \cdot p^{\prime}}{2 \sqrt{b^{2}+a^{2} p^{2}}} \rightarrow\right. \\
p=p+x p^{\prime} \pm \frac{a^{2} p \cdot p^{\prime}}{\sqrt{b^{2}+a^{2} p^{2}}} \rightarrow x p^{\prime} \pm \frac{a^{2} p \cdot p^{\prime}}{\sqrt{b^{2}+a^{2} p^{2}}}=0 \rightarrow p^{\prime} \cdot\left(x \pm \frac{a^{2} p}{\sqrt{b^{2}+a^{2} p^{2}}}\right)=0 \rightarrow \\
{\left[\begin{array}{c}
1 \text { case: } p^{\prime}=0 \\
2 \text { case }: x \pm \frac{a^{2} p}{\sqrt{b^{2}+a^{2} p^{2}}}
\end{array}\right]}
\end{gathered}
$$

1 case: $p^{\prime}=0$

$$
p^{\prime}=0 \rightarrow p=\text { Const }=C_{1} \rightarrow\left(p=\frac{d y}{d x}\right) \rightarrow \frac{d y}{d x}=C_{1} \rightarrow d y=C_{1} d x \rightarrow y=C_{1} x+C_{2}
$$

It remains to determine the constants C_{1} and C_{2}. We substitute the solution found in the initial equation:

$$
\left\{\begin{array}{c}
(y-x p)^{2}=b^{2}+a^{2} p^{2} \\
p=C_{1} \\
y=C_{1} x+C_{2}
\end{array} \rightarrow\left(C_{1} x+C_{2}-C_{1} x\right)^{2}=b^{2}+a^{2} C_{1}^{2} \rightarrow C_{2}^{2}=b^{2}+a^{2} C_{1}^{2} \rightarrow\right.
$$

$$
\left\{\begin{array}{c}
C_{1}=c \\
C_{2}= \pm \sqrt{b^{2}+a^{2} c^{2}}
\end{array} \rightarrow y=c x \pm \sqrt{b^{2}+a^{2} c^{2}}\right.
$$

2 case:

$$
\begin{gathered}
\left.x \pm \frac{a^{2} p}{\sqrt{b^{2}+a^{2} p^{2}}}=0 \rightarrow x=\mp \frac{a^{2} p}{\sqrt{b^{2}+a^{2} p^{2}}} \right\rvert\, \times \sqrt{b^{2}+a^{2} p^{2}} \rightarrow x \sqrt{b^{2}+a^{2} p^{2}}=\mp a^{2} p \rightarrow \\
\left(x \sqrt{b^{2}+a^{2} p^{2}}\right)^{2}=\left(\mp a^{2} p\right)^{2} \rightarrow x^{2}\left(b^{2}+a^{2} p^{2}\right)=a^{4} p^{2} \rightarrow x^{2} b^{2}+a^{2} x^{2} p^{2}=a^{4} p^{2} \rightarrow \\
x^{2} b^{2}=a^{4} p^{2}-a^{2} x^{2} p^{2} \rightarrow x^{2} b^{2}=a^{2}\left(a^{2}-x^{2}\right) p^{2} \left\lvert\, \div a^{2}\left(a^{2}-x^{2}\right) \rightarrow p^{2}=\frac{x^{2} b^{2}}{a^{2}\left(a^{2}-x^{2}\right)} \rightarrow\right. \\
\sqrt{p^{2}}=\sqrt{\frac{x^{2} b^{2}}{a^{2}\left(a^{2}-x^{2}\right)}} \rightarrow p= \pm \frac{b}{a} \cdot \frac{x}{\sqrt{a^{2}-x^{2}}} \rightarrow\left(p=\frac{d y}{d x}\right) \rightarrow \frac{d y}{d x}= \pm \frac{b}{a} \cdot \frac{x}{\sqrt{a^{2}-x^{2}}} \rightarrow \\
d y= \pm \frac{b}{a} \cdot \frac{x \cdot d x}{\sqrt{a^{2}-x^{2}}} \rightarrow y= \pm \frac{b}{a} \cdot \int \frac{x d x}{\sqrt{a^{2}-x^{2}}}=\left[\begin{array}{l}
a^{2}-x^{2}=t \\
\left.-2 x d x=d t \rightarrow x d x=-\frac{d t}{2}\right] \rightarrow \\
y= \pm \frac{b}{a} \cdot \int \frac{-\frac{d t}{2}}{\sqrt{t}} \rightarrow y=\mp \frac{b}{a} \cdot \int \frac{d t}{2 \sqrt{t}} \rightarrow y=\mp \frac{b}{a} \cdot \sqrt{t}+\text { Const } \rightarrow y=\mp \frac{b}{a} \cdot \sqrt{a^{2}-x^{2}}+\text { Const }
\end{array}\right.
\end{gathered}
$$

Conclusion,

$$
\begin{gathered}
y=c x \pm \sqrt{b^{2}+a^{2} c^{2}} \\
o r \\
y=\mp \frac{b}{a} \cdot \sqrt{a^{2}-x^{2}}+\text { const }
\end{gathered}
$$

ANSWER:

1. $\left[\begin{array}{c}y=c x \pm \sqrt{b^{2}+a^{2} c^{2}} \\ o r \\ y=\mp \frac{b}{a} \cdot \sqrt{a^{2}-x^{2}}+\text { Const }\end{array}\right.$
2. $y= \pm \sqrt{\frac{x^{2}}{2}+C \cdot x^{4}}$
