Answer on Question \#79708 - Math - Statistics and Probability

Question

A tennis coach believes that taller players are generally capable of letting faster serves. To investigate this hypothesis, he collects data on 20 adult male players he coaches. The height h, in a matter and the speed of each player faster serve, v in km per hour were recorded and summarized as follows
$h=36.22$
$v=2275$
h2=65.7396
$\mathrm{V} 2=259853$
$H V=4128.03$

1. Calculate the Pearson moment correlation coefficient for these data

Solution

The Pearson moment correlation coefficient
$r=\frac{n \sum x_{i} y_{i}-\sum x_{i} \sum y_{i}}{\sqrt{n \sum x_{i}^{2}-\left(\sum x_{i}\right)^{2} \sqrt{n \sum y_{i}^{2}-\left(\sum y_{i}\right)^{2}}}}$
$\mathrm{n}=20$;
$\sum x_{i} y_{i}=H V=4128.03 ;$
$\sum x_{i}=\mathrm{h}=36.22 ; \quad \quad \sum y_{i}=\mathrm{v}=2275$
$\sum x_{i}^{2}=h 2=65.7369 \quad \sum y_{i}^{2}=V 2=259853$
$r=\frac{20 * 4128.03-36.22 * 2275}{\sqrt{20^{*} 65.7369-(36.22)^{2}} * \sqrt{20 * 259853-(2275)^{2}}}=\frac{82560.6-82400.5}{\sqrt{2.8496} * \sqrt{21435}}=0.648$
As we see, the correlation coefficient equals 64.8%. It shows a strong positive relationship, and taller players are generally capable of letting faster serves because its value is more than 60%.

Answer: A tennis coach believes that taller players are generally capable of letting faster serves because correlation coefficient equals 64.8%.

Question

2. Comment on the which hypothesis

Solution

Method 1 The p-value approach

Let's specify the null and alternative hypotheses:
Null hypothesis $\mathbf{H}_{\mathbf{0}} \mathbf{: r}=\mathbf{0}$
Alternative hypothesis HA: r $\neq \mathbf{0}$
Calculate the value of the test statistic using the following formula:

$$
t^{*}=\frac{r \sqrt{n-2}}{\sqrt{1-r^{2}}}=\frac{0.648 \times \sqrt{20-2}}{\sqrt{1-0.648^{2}}}=3.61
$$

Then we should use the resulting test statistic to calculate the P -value. To obtain the P -value, we need to compare the test statistic to a t-distribution with 18 degrees of freedom (since 20-2 = 18).
$t_{\text {distribution }}(\alpha=0.01)=2.88$
So, $t^{*}>t_{\text {distribution }}(\alpha=0.01)$, we can reject the null hypothesis. There is a sufficient statistical evidence at the $\alpha=0.01$ level to conclude that taller players are generally capable of letting faster serves.

Method 2 The Critical Values approach

Thus, $r=0.648$ using $n=20, d f=n-2=20-2=18$.
The critical values associated with $d f=18$ are -0.5614 and +0.5614 .
If r < negative critical value or $r>$ positive critical value, then r is significant.
Since $r=0.648$ and $0.648>0.5614, r$ is significant and we can surely conclude that taller players are generally capable of letting faster serves.

Answer: Using the results of 2 methods (a p-value and a table of Critical Values) we can conclude that taller players are generally capable of letting faster serves.

