Question 1. Let $T \in B(X, X)$ be invertible in $B(X, X)$, where X is a complex Banach space. Show that $\sigma\left(T^{-1}\right)=\{1 / \lambda: \lambda \in \sigma(T)\}$.

Solution. By the definition of the spectrum, we need to prove that $T-\lambda I$ is not invertible if and only if $T^{-1}-\frac{1}{\lambda} I$ is not invertible. Note that $\lambda=0$ does not belong to $\sigma(T)$, because T is invertible. Thus, our task is to prove that $T-\lambda I$ is invertible iff $T^{-1}-\frac{1}{\lambda} I$ is invertible for all $\lambda \neq 0$.

Let T and $T-\lambda I$ be invertible, $\lambda \neq 0$. Prove that $T^{-1}-\frac{1}{\lambda} I$ is invertible. It is sufficient to show that $T^{-1}-\frac{1}{\lambda} I$ is invertible on the left and on the right. Indeed, note that

$$
-\lambda T\left(T^{-1}-\frac{1}{\lambda} I\right)=T-\lambda I
$$

Since $T-\lambda I$ is invertible, this implies

$$
-\lambda(T-\lambda I)^{-1} T\left(T^{-1}-\frac{1}{\lambda} I\right)=I
$$

Furthermore

$$
\left(T^{-1}-\frac{1}{\lambda} I\right)(-\lambda T)(T-\lambda I)^{-1}=(T-\lambda I)(T-\lambda I)^{-1}=I
$$

Thus, $-\lambda(T-\lambda I)^{-1} T=-\lambda T(T-\lambda I)^{-1}=\left(T^{-1}-\frac{1}{\lambda} I\right)^{-1}$.
The converse implication: "if $T^{-1}-\frac{1}{\lambda} I$ is invertible, then $T-\lambda I$ is invertible" is proved similarly.

