Answer on Question \#79585 - Math - Statistics and Probability

The lifetime of a car batteries is normally distributed with mean 1 year and standard deviation 1.5 months.

Question

a) calculate the probability that a randomly selected car battery will last 10 to 11 months.

Solution

$$
\begin{aligned}
& z=\frac{x-\mu}{\sigma} ; \\
& z_{1}=\frac{x_{1}-\mu}{\sigma}=\frac{10-12}{1.5}=-1.33 \\
& z_{2}=\frac{11-12}{1.5}=-0.67 \\
& p\left(x_{1}<x<x_{2}\right)=p\left(z_{1}<z<z_{2}\right)=p\left(z<z_{2}\right)-p\left(z<z_{1}\right) ; \\
& p\left(z<z_{1}\right)=0.0912 \\
& p\left(z<z_{2}\right)=0.2525 \\
& p\left(x_{1}<x<x_{2}\right)=0.2525-0.0912=0.1613 .
\end{aligned}
$$

Question

b) calculate the minimum lifetime of the 30% longest lasting car batteries

Solution

```
Z0.3 = 0.52;
x=\mu+z\sigma=12+0.52\times1.5=12.78.
```


Question

c) by improving the quality of the car batteries, the lifetime is to be increased such that only 2.5% of the car batteries will fail before 10 months. Find the new mean lifetime of the car batteries, Assume the standard deviation remains unchanged,

Solution

```
Z0.025 =-1.96
x=\mu+z\sigma; hence }\mu=x-z\sigma=10-(-1.96)\times1.5=12.94
```

