Answer on Question \#79558 - Math - Trigonometry

Question

If $\sin 4 B+\sin 2 B=1$ then prove that $\tan 4 B-\tan 2 B=1$.

Solution

The question is incorrect. Let's prove it. Assume that there exists B such that $\sin 4 B+\sin 2 B=1$ and $\tan 4 \mathrm{~B}-\tan 2 \mathrm{~B}=1$.

Let $\sin 2 B=x$ and $\cos 2 B=y$. Then we have: $\sin 4 B=2 \sin 2 B \cos 2 B=2 x y$;
$\operatorname{Tan} 2 \mathrm{~B}=\mathrm{x} / \mathrm{y} ; \tan 4 \mathrm{~B}=\frac{2 \tan 2 \mathrm{~B}}{1-\tan ^{2} 2 \mathrm{~B}}=\frac{2 x y}{y^{2}-x^{2}}$.
Then, we have: $2 x y+x=1\left({ }^{* *}\right)$ and $\frac{2 x y}{y^{2}-x^{2}}-\frac{x}{y}=1$, with $\mathrm{x}^{2}+\mathrm{y}^{2}=1$.
The second condition is equivalent to $2 x y^{2}=(x+y)\left(y^{2}-x^{2}\right)=(x+y)^{2}(y-x) \cdot\left(^{*}\right)$
Note that: $(x+y)^{2}=x^{2}+2 x y+y^{2}=1+2 x y=1+(1-x)=2-x$.
Also, $2 x y^{2}=(1-x) y=y-x y$.
Then, from the $\left({ }^{*}\right)$, we get: $y-x y=(2-x)(y-x)=2 y-x y-2 x+x^{2}$,
Which is equivalent to: $y=2 x-x^{2}$.
On the other hand, $\left(\right.$ from $\left.^{* *}\right)$ we get that $y=\frac{1-x}{2 x}$.
Thus, $2 x-x^{2}=\frac{1-x}{2 x}$, so $1-x=4 x^{2}-2 x^{3}$, and then $2 x^{3}-4 x^{2}-x+1=0 .\left({ }^{\circ}\right)$
Since $x^{2}+y^{2}=1$, we get: $x^{2}+\left(\frac{1-x}{2 x}\right)^{2}=1$, which means that $4 x^{4}+1-2 x+x^{2}=4 x^{2}$, so $4 x^{4}-3 x^{2}-2 x+1=0$,
which is equivalent to $(x-1)\left(4 x^{3}+4 x^{2}+x-1\right)=0$. Since $x=1$ cannot be the root (because otherwise $y=0$ and $\tan 2 B$ does not exist), we have $4 x^{3}+4 x^{2}+x-1=0$.

Sum it up with $\left({ }^{\circ}\right): 6 x^{3}=0$, which means that $x=0, y= \pm 1$. But I this case, the equation $\left({ }^{* *}\right)$ is wrong. Thus, the task is incorrect.

