Answer on Question \#79537 - Math - Statistics and Probability

Question

Consider a sample of 10 randomly selected employees at an auditing firm. The probability that 3 employees in this sample have an honours degree is 0.215 while the probability that 4 employees in this sample have an honours degree is 0.251 . Determine the probability that at least 2 employees in this sample have an honours degree.

Solution

$$
\begin{aligned}
& P(3,10)=0.215 \\
& P(4,10)=0.251 \\
& P(>=2,10)-?
\end{aligned}
$$

$$
\mathrm{P}(>=2,10)=1-\mathrm{P}(<=1,10)=1-C_{10}^{1} p^{1}(1-p)^{9}-(1-p)^{10}
$$

$$
P(3,10)=C_{10}^{3} p^{3}(1-p)^{7}=120 p^{3}(1-p)^{7}=0.215
$$

$$
P(4,10)=C_{10}^{4} p^{4}(1-p)^{6}=210 p^{4}(1-p)^{6}=0.251
$$

$$
p^{3}(1-p)^{7}=0.00179
$$

$$
p^{4}(1-p)^{6}=0.001195
$$

$$
\left(p^{3}(1-p)^{6}\right)(1-p)=0.00179
$$

$$
\left(p^{3}(1-p)^{6}\right) p=0.001195
$$

$$
p^{3}(1-p)^{6}=0.001195+0.00179=0.002985
$$

$$
p=0.001195 / 0.002985=0.4
$$

$$
P(>=2,10)=1-10 p(1-p)^{9}-(1-p)^{10}=1-0.04-0.006=0.954
$$

Answer: 0.954

