Answer on Question \#79506-Math - Calculus

We have a function $f(x)=x^{2}-x+2$.

At first, we find a derivative of this function, $f^{\prime}(x)=2 x-1$.

At second, we have $2 x-1=0$, then $x_{1}=0.5$ is a stationary (critical) point.

We have two intervals $(-\infty, 0.5)$ and $(0.5,+\infty)$.

Let us define the behavior of the function on this intervals.

Take the point $a=-1, a \in(-\infty, 0.5)$,
then $f^{\prime}(a)=f^{\prime}(-1)=2 \cdot(-1)-1=-2-1=-3<0$,
this means that $f(x)$ is decreasing on the interval $x \in(-\infty, 0.5)$.

Take the point $b=1, b \in(0.5,+\infty)$,
then $f^{\prime}(b)=f^{\prime}(1)=2 \cdot 1-1=2-1=1>0$,
this means that $f(x)$ is increasing on the interval $x \in(0.5,+\infty)$,

Thus, we have an answer:
$f(x)$ is increasing on the interval $x \in(0.5,+\infty)$,
$f(x)$ is decreasing on the interval $x \in(-\infty, 0.5)$.

The graph has this form.

