ANSWER on Question \#79497 - Math - Differential Equations QUESTION

Solve the partial differential equation

$$
\left(D^{2}+2 D D^{\prime}+D^{\prime 2}-2 D-2 D^{\prime}\right) z=\sin (x+2 y)
$$

SOLUTION

Let us use some well-known facts.

Let the given differential equation be

$$
F\left(D, D^{\prime}\right)=f(x, y)
$$

Factorize $F\left(D, D^{\prime}\right)$ into linear factors. Then use the following results.
Rule I. Corresponding to each non-repeated factor $\left(b D-a D^{\prime}-c\right)$, the part of C.F. is taken as

$$
e^{\left(\frac{c x}{b}\right)} \varphi(b y+a x), \text { if } b \neq 0
$$

We now have three particular cases of Rule I:
Rule IA. Take $c=0$ in Rule I. Hence corresponding to each linear factor ($b D-a D^{\prime}$), the part of C.F. is

$$
\varphi(b y+a x), \text { if } b \neq 0
$$

Rule IB. Take $a=0$ in Rule I. Hence corresponding to each linear factor ($b D-c$), the part of C.F. is

$$
e^{\left(\frac{c x}{b}\right)} \varphi(b y), \text { if } b \neq 0
$$

Rule IC. Take $a=c=0$ and $b=1$ in Rule I. Hence corresponding to each linear factor ($1 \cdot D$), the part of C.F. is

$$
\varphi(y)
$$

In our case,

$$
\left(D^{2}+2 D D^{\prime}+D^{\prime 2}-2 D-2 D^{\prime}\right) z=\sin (x+2 y) \rightarrow z(x, y)=C . F .+P . I .
$$

0 STEP: We factor the expression

$$
\begin{gathered}
D^{2}+2 D D^{\prime}+D^{\prime 2}-2 D-2 D^{\prime}=\left(D^{2}+2 D D^{\prime}+D^{2}\right)+\left(-2 D-2 D^{\prime}\right)= \\
=\left(D+D^{\prime}\right)^{2}-2 \cdot\left(D+D^{\prime}\right)=\left(D+D^{\prime}\right)\left(D+D^{\prime}-2\right)
\end{gathered}
$$

Conclusion,

$$
\left(D^{2}+2 D D^{\prime}+D^{\prime 2}-2 D-2 D^{\prime}\right) z=\left(D+D^{\prime}\right)\left(D+D^{\prime}-2\right) z
$$

1 STEP: Let find C.F.

$$
\begin{gathered}
\text { C.F. }=(\text { C.F. })_{1}+(\text { C.F. })_{2} \\
\left\{\begin{array} { c }
{ (D + D ^ { \prime }) z } \\
{ (b D - a D ^ { \prime } - c) z }
\end{array} \rightarrow \left\{\begin{array}{c}
b=1 \\
a=-1 \\
c=0
\end{array} \rightarrow(C . F .)_{1}=e^{\left(\frac{0 \cdot x}{1}\right)} \cdot \varphi_{1}(1 \cdot y+(-1) \cdot x) \rightarrow\right.\right. \\
(C . F .)_{1}=\varphi_{1}(y-x), \text { where } \varphi_{1} \text { is an arbitrary function } \\
\left(\begin{array} { c }
{ (D + D ^ { \prime } - 2) z } \\
{ (b D - a D ^ { \prime } - c) z }
\end{array} \rightarrow \left\{\begin{array}{c}
b=1 \\
a=-1 \\
c=2
\end{array} \rightarrow(C . F .)_{2}=e^{\left(\frac{2 \cdot x}{1}\right)} \cdot \varphi_{2}(1 \cdot y+(-1) \cdot x) \rightarrow\right.\right. \\
(C . F .)_{2}=e^{2 x} \varphi_{2}(y-x), \text { where } \varphi_{2} \text { is an arbitrary function }
\end{gathered}
$$

Then,

$$
\text { C.F. }=(C . F .)_{1}+(C . F .)_{2} \rightarrow \text { C.F. }=\varphi_{1}(y-x)+e^{2 x} \varphi_{2}(y-x)
$$

2 STEP: Let find P.I.

$$
\begin{aligned}
& \text { P.I. }=\frac{1}{D^{2}+2 D D^{\prime}+D^{\prime 2}-2 D-2 D^{\prime}} \sin (x+2 y)=\frac{1}{D^{2}+2 D D^{\prime}+D^{\prime 2}-2 D-2 D^{\prime}} \sin (1 \cdot x+2 \cdot y)= \\
& =\frac{1}{(1 \cdot i)^{2}+2 \cdot(1 \cdot i) \cdot(2 \cdot i)+(2 \cdot i)^{2}-2 D-2 D^{\prime}} \sin (1 \cdot x+2 \cdot y)= \\
& =\frac{1}{i^{2}+2 \cdot 2 i^{2}+4 i^{2}-2 D-2 D^{\prime}} \sin (x+2 y)=\frac{1}{9 i^{2}-2 D-2 D^{\prime}} \sin (x+2 y)= \\
& =\frac{1}{-9-2 D-2 D^{\prime}} \sin (x+2 y)=\frac{1}{-1 \cdot\left(2 D+2 D^{\prime}+9\right)} \sin (x+2 y)=\frac{-1}{\left(2 D+2 D^{\prime}\right)+9} \sin (x+2 y)= \\
& =\frac{-1 \cdot\left(\left(2 D+2 D^{\prime}\right)-9\right)}{\left(\left(2 D+2 D^{\prime}\right)+9\right) \cdot\left(\left(2 D+2 D^{\prime}\right)-9\right)} \sin (x+2 y)=\frac{9-\left(2 D+2 D^{\prime}\right)}{\left(2 D+2 D^{\prime}\right)^{2}-81} \sin (x+2 y)= \\
& =\frac{9-\left(2 D+2 D^{\prime}\right)}{4 D^{2}+8 D D^{\prime}+4 D^{\prime 2}-81} \sin (x+2 y)= \\
& =\frac{9-\left(2 D+2 D^{\prime}\right)}{4 \cdot(1 \cdot i)^{2}+8 \cdot(1 \cdot i) \cdot(2 \cdot i)+4 \cdot(2 \cdot i)^{2}-81} \sin (1 \cdot x+2 \cdot y)= \\
& =\frac{9-\left(2 D+2 D^{\prime}\right)}{4 i^{2}+16 i^{2}+16 i^{2}-81} \sin (x+2 y)=\frac{9-\left(2 D+2 D^{\prime}\right)}{36 i^{2}-81} \sin (x+2 y)=\frac{9-\left(2 D+2 D^{\prime}\right)}{-36-81} \sin (x+2 y)= \\
& =\frac{9-\left(2 D+2 D^{\prime}\right)}{-117} \sin (x+2 y)=\frac{1}{117} \cdot\left(\left(2 D+2 D^{\prime}\right)-9\right) \sin (x+2 y)= \\
& =\frac{1}{117}\left(2 \cdot \frac{\partial}{\partial x}+2 \cdot \frac{\partial}{\partial y}-9\right) \sin (x+2 y)= \\
& =\frac{1}{117}\left(2 \cdot \frac{\partial}{\partial x}(\sin (x+2 y))+2 \cdot \frac{\partial}{\partial y}(\sin (x+2 y))-9 \cdot \sin (x+2 y)\right)= \\
& =\frac{1}{117}(2 \cdot \cos (x+2 y)+2 \cdot 2 \cdot \cos (x+2 y)-9 \cdot \sin (x+2 y))=\frac{6 \cos (x+2 y)-9 \sin (x+2 y)}{117}= \\
& =\frac{3 \cdot(2 \cos (x+2 y)-3 \sin (x+2 y))}{3 \cdot 39}=\frac{2 \cos (x+2 y)-3 \sin (x+2 y)}{39} \equiv \\
& \equiv \frac{2}{39} \cdot \cos (x+2 y)-\frac{3}{39} \cdot \sin (x+2 y)
\end{aligned}
$$

Conclusion,

$$
\text { P.I. }=\frac{2}{39} \cdot \cos (x+2 y)-\frac{3}{39} \cdot \sin (x+2 y)
$$

General Conclusion,

$$
\begin{gathered}
z(x, y)=\text { C.F. }+ \text { P.I. }=\varphi_{1}(y-x)+e^{2 x} \varphi_{2}(y-x)+\frac{2}{39} \cdot \cos (x+2 y)-\frac{3}{39} \cdot \sin (x+2 y) \rightarrow \\
z(x, y)=\varphi_{1}(y-x)+e^{2 x} \varphi_{2}(y-x)+\frac{2}{39} \cdot \cos (x+2 y)-\frac{3}{39} \cdot \sin (x+2 y)
\end{gathered}
$$

ANSWER:

$$
\left\{\begin{array}{c}
z(x, y)=\varphi_{1}(y-x)+e^{2 x} \varphi_{2}(y-x)+\frac{2}{39} \cdot \cos (x+2 y)-\frac{3}{39} \cdot \sin (x+2 y) \\
\text { where } \varphi_{1} \text { and } \varphi_{2} \text { are arbitrary functions }
\end{array}\right.
$$

