## ANSWER on Question \#79414 - Math - Differential Equations QUESTION

Solve the differential equation

$$
\frac{d y}{d x}=\frac{2 y^{2}+3 x y}{x^{2}}
$$

Possible answers:
a)

$$
y=\frac{c x^{3}}{1-c x^{2}}
$$

b)

$$
y=\frac{c x^{3}}{1+c x^{2}}
$$

c)

$$
y=-\frac{c x^{3}}{1-c x^{2}}
$$

d)

$$
y=-\frac{c x^{3}}{1+c x^{2}}
$$

## SOLUTION

$$
\frac{d y}{d x}=\frac{2 y^{2}+3 x y}{x^{2}} \rightarrow \frac{d y}{d x}=\frac{2 y^{2}}{x^{2}}+\frac{3 x y}{x^{2}} \rightarrow \frac{d y}{d x}=2 \cdot\left(\frac{y}{x}\right)^{2}+3 \cdot \frac{y}{x}
$$

We introduce the substitution

$$
u=\frac{y}{x} \rightarrow y=u x \rightarrow \frac{d y}{d x}=\frac{d u}{d x} \cdot x+u \cdot 1 \rightarrow \frac{d y}{d x}=\frac{d u}{d x} \cdot x+u
$$

Then,

$$
\begin{gathered}
\left\{\begin{array}{l}
\frac{d y}{d x}=2 \cdot\left(\frac{y}{x}\right)^{2}+3 \cdot \frac{y}{x} \\
u=\frac{y}{x} \\
\frac{d y}{d x}=\frac{d u}{d x} \cdot x+u
\end{array} \rightarrow \frac{d u}{d x} \cdot x+u=2 u^{2}+3 u \rightarrow \frac{d u}{d x} \cdot x=2 u^{2}+3 u-u \rightarrow \frac{d u}{d x} \cdot x=2 u^{2}+2 u \rightarrow\right. \\
\frac{d u}{d x} \cdot x=2 u^{2}+2 u \left\lvert\, \times\left(\frac{2 \cdot d x}{x \cdot\left(2 u^{2}+2 u\right)}\right) \rightarrow \frac{2 \cdot d u}{2 u^{2}+2 u}=\frac{2 \cdot d x}{x} \rightarrow \frac{2 \cdot((u+1)-u) d u}{2 u(u+1)}=\frac{2 \cdot d x}{x} \rightarrow\right. \\
\left(\frac{1}{u}-\frac{1}{u+1}\right) d u=\left(\frac{2}{x}\right) d x \rightarrow \int\left(\frac{1}{u}-\frac{1}{u+1}\right) d u=\int\left(\frac{2}{x}\right) d x \rightarrow \ln |u|-\ln |u+1|=2 \cdot \ln |x|+\ln |c| \rightarrow \\
\left.\ln \left|\frac{u}{u+1}\right|=\ln \left|c x^{2}\right| \rightarrow \frac{u}{u+1}=c x^{2} \right\rvert\, \times(u+1) \rightarrow u=c x^{2} \cdot(u+1) \rightarrow u=c x^{2} \cdot u+c x^{2} \rightarrow \\
u-c x^{2} \cdot u=c x^{2} \rightarrow u\left(1-c x^{2}\right)=c x^{2} \rightarrow u=\frac{c x^{2}}{1-c x^{2}}
\end{gathered}
$$

We recall that we introduced a substitution

$$
u=\frac{y}{x}
$$

Then,

$$
\left\{\left.\begin{array}{c}
u=\frac{c x^{2}}{1-c x^{2}} \\
u=\frac{y}{x}
\end{array} \rightarrow \frac{y}{x}=\frac{c x^{2}}{1-c x^{2}} \right\rvert\, \times(x) \rightarrow y=\frac{c x^{3}}{1-c x^{2}}\right.
$$

Conclusion,

$$
\left.\frac{d y}{d x}=\frac{2 y^{2}+3 x y}{x^{2}} \rightarrow y=\frac{c x^{3}}{1-c x^{2}}-A N S W E R a\right)
$$

## ANSWER:

a) $y=\frac{c x^{3}}{1-c x^{2}}$

