ANSWER on Question \#79371 - Math - Differential Equations

QUESTION

Solve the differential equation

$$
\frac{d y}{d x}=2 y^{2}+3 x y / x^{2}
$$

Possible answers:
a)

$$
y=\frac{c x^{3}}{1-c x^{2}}
$$

b)

$$
y=c x 31+c x 2
$$

c)

$$
y=-c x 31-c x 2
$$

d)

$$
y=-c x 31+c x 2
$$

SOLUTION

Hint: Since only the version of the answer (a) is written with the help of Latex functions, only its formula editor understands uniquely, only I will consider it correct from the whole question.

Hint: Equation Editor predetermined equation may be understood in two ways
1)

$$
\frac{d y}{d x}=\frac{2 y^{2}+3 x y}{x^{2}}
$$

2)

$$
\frac{d y}{d x}=2 y^{2}+\frac{3 x y}{x^{2}}
$$

We will solve each of these equations separately.
Hint: Most likely, in the variants of the answer some function signs are omitted. Probably, the answer options should have looked like this
a)

$$
y=\frac{c x^{3}}{1-c x^{2}}
$$

b)

$$
y=\frac{c x^{3}}{1+c x^{2}}
$$

c)

$$
y=-\frac{c x^{3}}{1-c x^{2}}
$$

d)

$$
y=-\frac{c x^{3}}{1+c x^{2}}
$$

Now we come to the solution of this equation.
1 CASE:

$$
\frac{d y}{d x}=\frac{2 y^{2}+3 x y}{x^{2}} \rightarrow \frac{d y}{d x}=\frac{2 y^{2}}{x^{2}}+\frac{3 x y}{x^{2}} \rightarrow \frac{d y}{d x}=2 \cdot\left(\frac{y}{x}\right)^{2}+3 \cdot \frac{y}{x}
$$

We introduce the substitution

$$
u=\frac{y}{x} \rightarrow y=u x \rightarrow \frac{d y}{d x}=\frac{d u}{d x} \cdot x+u \cdot 1 \rightarrow \frac{d y}{d x}=\frac{d u}{d x} \cdot x+u
$$

Then

$$
\begin{aligned}
& \left\{\begin{array}{c}
\frac{d y}{d x}=2 \cdot\left(\frac{y}{x}\right)^{2}+3 \cdot \frac{y}{x} \\
u=\frac{y}{x} \\
\frac{d y}{d x}=\frac{d u}{d x} \cdot x+u \\
=2 u^{2}+2 u \rightarrow
\end{array}\right. \\
& \rightarrow \begin{array}{r}
\frac{d u}{d x} \cdot x+u=2 u^{2}+3 u \rightarrow \frac{d u}{d x} \cdot x=2 u^{2}+3 u-u \rightarrow \frac{d u}{d x} \cdot x
\end{array} \\
& =\frac{2 \cdot d x}{x} \rightarrow \\
& \begin{array}{c}
\frac{d u}{d x}=2 u^{2}+2 u \left\lvert\, \times\left(\frac{2 \cdot d x}{x \cdot\left(2 u^{2}+2 u\right)}\right) \rightarrow \frac{2 \cdot d u}{2 u^{2}+2 u}=\frac{2 \cdot d x}{x} \rightarrow \frac{2 \cdot((u+1)-u) d u}{2 u(u+1)}\right. \\
=2 \cdot \ln |x|+\ln |c| \rightarrow
\end{array}
\end{aligned}
$$

$\left.\ln \left|\frac{u}{u+1}\right|=\ln \left|c x^{2}\right| \rightarrow \frac{u}{u+1}=c x^{2} \right\rvert\, \times(u+1) \rightarrow u=c x^{2} \cdot(u+1) \rightarrow u=c x^{2} \cdot u+c x^{2} \rightarrow$

$$
u-c x^{2} \cdot u=c x^{2} \rightarrow u\left(1-c x^{2}\right)=c x^{2} \rightarrow u=\frac{c x^{2}}{1-c x^{2}}
$$

We recall that we introduced a substitution

$$
u=\frac{y}{x}
$$

Then,

$$
\left\{\left.\begin{array}{c}
u=\frac{c x^{2}}{1-c x^{2}} \\
u=\frac{y}{x}
\end{array} \rightarrow \frac{y}{x}=\frac{c x^{2}}{1-c x^{2}} \right\rvert\, \times(x) \rightarrow y=\frac{c x^{3}}{1-c x^{2}}\right.
$$

Conclusion,

$$
\frac{d y}{d x}=\frac{2 y^{2}+3 x y}{x^{2}} \rightarrow y=\frac{c x^{3}}{1-c x^{2}}
$$

2 CASE:

$$
\frac{d y}{d x}=2 y^{2}+\frac{3 x y}{x^{2}} \rightarrow \frac{d y}{d x}=2 y^{2}+3 \cdot \frac{y}{x}
$$

As we can see, this is the Bernoulli equation:

$$
\frac{d y}{d x}+P(x) y=Q(x) y^{n}
$$

(More information: https://en.wikipedia.org/wiki/Bernoulli differential equation)
In our case,

$$
\frac{d y}{d x}=2 y^{2}+3 \cdot \frac{y}{x} \left\lvert\, \div\left(y^{2}\right) \rightarrow \frac{1}{y^{2}} \cdot \frac{d y}{d x}=2+\frac{3}{x} \cdot \frac{1}{y}\right.
$$

We introduce the substitution

$$
u=\frac{1}{y} \rightarrow \frac{d u}{d x}=-\frac{1}{y^{2}} \cdot \frac{d y}{d x} \rightarrow\left\{\begin{array}{c}
y=\frac{1}{u} \\
\frac{1}{y^{2}} \cdot \frac{d y}{d x}=-\frac{d u}{d x}
\end{array}\right.
$$

Then,

$$
\left\{\begin{array}{rl}
\frac{1}{y^{2}} \cdot \frac{d y}{d x}=2+\frac{3}{x} \cdot \frac{1}{y} \\
y=\frac{1}{u} \\
\frac{1}{y^{2}} \cdot \frac{d y}{d x}=-\frac{d u}{d x}
\end{array} \rightarrow-\frac{d u}{d x}=2+\frac{3}{x} \cdot u\right.
$$

We have obtained a nonhomogeneous equation of the first order. We solve it by the method of variation of the constant.

1 STEP: Solve a homogeneous equation.

$$
\begin{aligned}
& \left.-\frac{d u}{d x}=\frac{3}{x} \cdot u \right\rvert\, \times\left(\frac{-d x}{u}\right) \rightarrow \frac{d u}{u}=\frac{-3 \cdot d x}{x} \rightarrow \int\left(\frac{1}{u}\right) d u=\int\left(-\frac{3}{x}\right) d x \rightarrow \ln |u| \\
&=-3 \cdot \ln |x|+\ln |c| \rightarrow
\end{aligned}
$$

$$
\ln |u|=\ln \left|\frac{c}{x^{3}}\right| \rightarrow u=\frac{c}{x^{3}}
$$

2 STEP: Variations of the constant.
We will assume that $c=c(x)$. Then,

$$
u=\frac{c(x)}{x^{3}} \rightarrow \frac{d u}{d x}=\frac{1}{x^{3}} \cdot \frac{d c}{d x}-\frac{3 c(x)}{x^{4}}
$$

We substitute the obtained formula for the derivative in the initial equation

$$
\begin{gathered}
\left\{\begin{array}{c}
-\frac{d u}{d x}=2+\frac{3}{x} \cdot u \\
u=\frac{c(x)}{x^{3}} \rightarrow-\left(\frac{1}{x^{3}} \cdot \frac{d c}{d x}-\frac{3 c(x)}{x^{4}}\right)=2+\frac{3}{x} \cdot \frac{c(x)}{x^{3}} \rightarrow \\
\frac{d u}{d x}=\frac{1}{x^{3}} \cdot \frac{d c}{d x}-\frac{3 c}{x^{4}}
\end{array}\right. \\
\left.-\frac{1}{x^{3}} \cdot \frac{d c}{d x}+\frac{3 c(x)}{x^{4}}=2+\frac{3 c(x)}{x^{4}} \rightarrow-\frac{1}{x^{3}} \cdot \frac{d c}{d x}=2 \right\rvert\, \times\left(-x^{3} d x\right) \rightarrow d c=\left(-2 x^{3}\right) d x \rightarrow \\
\int d c=\int\left(-2 x^{3}\right) d x \rightarrow c(x)=-2 \cdot \frac{x^{3+1}}{3+1}+C \rightarrow c(x)=C-\frac{x^{4}}{2}=\frac{2 C-x^{4}}{2} \equiv \frac{A-x^{4}}{2}
\end{gathered}
$$

Then,

$$
\left\{\begin{array}{rl}
u & =\frac{c(x)}{x^{3}} \\
c(x) & =\frac{A-x^{4}}{2}
\end{array} \rightarrow u=\frac{A-x^{4}}{2 x^{3}}\right.
$$

We recall that we introduced a substitution

$$
u=\frac{1}{y}
$$

Then

$$
\left\{\begin{array}{c}
u=\frac{A-x^{4}}{2 x^{3}} \\
u=\frac{1}{y}
\end{array} \rightarrow \frac{1}{y}=\frac{A-x^{4}}{2 x^{3}} \rightarrow y=\frac{2 x^{3}}{A-x^{4}}\right.
$$

Conclusion,

$$
\frac{d y}{d x}=2 y^{2}+\frac{3 x y}{x^{2}} \rightarrow y=\frac{2 x^{3}}{A-x^{4}}
$$

ANSWER:

If the initial equation was

$$
\frac{d y}{d x}=\frac{2 y^{2}+3 x y}{x^{2}}
$$

then the solution is

$$
\text { a) } y=\frac{c x^{3}}{1-c x^{2}}
$$

If the initial equation was

$$
\frac{d y}{d x}=2 y^{2}+\frac{3 x y}{x^{2}}
$$

then

In the provided options there is no correct answer

$$
\frac{d y}{d x}=2 y^{2}+\frac{3 x y}{x^{2}} \rightarrow y=\frac{2 x^{3}}{A-x^{4}} \text { will be the correct answer. }
$$

