Answer on Question \# 79329 - Math - Differential Equations

Question

Solve the differential equation:
$\left(x^{2}+y^{2}\right) d x-2 x y d y=0$

Solution

$\left(x^{2}+y^{2}\right) d x-2 x y d y=0$

$$
\begin{align*}
& \text { Or, }\left(x^{2}+y^{2}\right)-2 x y \frac{d y}{d x}=0 \\
& \text { Or, } \frac{d y}{d x}=\frac{\left(x^{2}+y^{2}\right)}{2 x y} \ldots \ldots \tag{1}
\end{align*}
$$

Let $\mathrm{y}=\mathrm{vx}$ \qquad (2) $[v$ is the function of $x]$

Now differentiate equation (2) with respect to x and we get,

$$
\frac{d y}{d x}=v+x \frac{d v}{d x}
$$

Now, put the values of $\frac{d y}{d x}$ and $y=v x$ in equation (1), we get,

$$
\begin{align*}
& v+x \frac{d v}{d x}=\frac{\left(1+v^{2}\right)}{2 v} \\
& \text { or, } x \frac{d v}{d x}=\frac{\left(1+v^{2}\right)}{2 v}-v=\frac{\left(1-v^{2}\right)}{2 v} \\
& \text { or, }-\frac{2 v}{v^{2}-1} d v=\frac{1}{x} d x \ldots \ldots . . . \tag{3}
\end{align*}
$$

Now, integrating both sides of equation (3), we get,

$$
\ln \left(\frac{1}{v^{2}-1}\right)=\ln x+\ln p \quad[\text { where } \ln p \text { is integration constant }]
$$

or, $\ln \frac{x^{2}}{\left(y^{2}-x^{2}\right)}=\ln (x p)$
or, $\mathrm{y}^{2}-\mathrm{x}^{2}=\mathrm{x}\left(\frac{1}{\mathrm{p}}\right)=\mathrm{cx} \quad$ [where, $\mathrm{c}=\frac{1}{\mathrm{p}}=$ constant $]$
Answer: Solution is $\mathrm{y}^{2}-\mathrm{x}^{2}=\mathrm{cx}$

