
Answer on question #79319
Show that 1 + 1√

2
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2(n− 1) for n ∈ N, n > 1

Solve using laws and theorem of inequalities
Solution.
Write the inequality for the harmonic and quadratic mean of numbers 1,
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Using the formula for the sum of the first n numbers:
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2 are both greater than 0 we can write:
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