Answer on question \#79319
Show that $1+\frac{1}{\sqrt{2}}+\ldots+\frac{1}{\sqrt{n}} \geq \sqrt{2(n-1)}$ for $n \in \mathbb{N}, n>1$
Solve using laws and theorem of inequalities

Solution.

Write the inequality for the harmonic and quadratic mean of numbers $1, \sqrt{2}, \ldots, \sqrt{n}$:

$$
\frac{n}{1+\frac{1}{\sqrt{2}}+\ldots+\frac{1}{\sqrt{n}}} \leq \sqrt{\frac{1+2+\ldots+n}{n}}
$$

Using the formula for the sum of the first n numbers:

$$
\frac{n}{1+\frac{1}{\sqrt{2}}+\ldots+\frac{1}{\sqrt{n}}} \leq \sqrt{\frac{n(n+1)}{2 n}}
$$

or

$$
\frac{n}{1+\frac{1}{\sqrt{2}}+\ldots+\frac{1}{\sqrt{n}}} \leq \sqrt{\frac{n+1}{2}}
$$

As $1+\frac{1}{\sqrt{2}}+\ldots+\frac{1}{\sqrt{n}}$ and $\sqrt{\frac{n+1}{2}}$ are both greater than 0 we can write:

$$
\frac{n}{\sqrt{\frac{n+1}{2}}} \leq 1+\frac{1}{\sqrt{2}}+\ldots+\frac{1}{\sqrt{n}}
$$

or

$$
1+\frac{1}{\sqrt{2}}+\ldots+\frac{1}{\sqrt{n}} \geq n \sqrt{\frac{2}{n+1}}=\sqrt{\frac{2 n^{2}}{n+1}} \geq \sqrt{\frac{2\left(n^{2}-1\right)}{n+1}}=\sqrt{2(n-1)}
$$

Therefore

$$
1+\frac{1}{\sqrt{2}}+\ldots+\frac{1}{\sqrt{n}} \geq \sqrt{2(n-1)}
$$

