Answer on Question \#79309 - Math - Financial Math

Question

You consider buying a business for R600 000. The business is expected to run for 5 years and the following net returns are expected.

Year 1-R160 000
Year 2-R250 000
Year 3- R190 000
Year 4-R180 000
Year 5- R130 000

Should you buy the business? A project of this type is expected to return at least 11% per annum. (Show details of your calculation).

Solution

We should buy the business if NPV of this project is greater or equal to 0 .
Formula: $N P V=C F 0+\frac{C F 1}{(1+r)^{\wedge 1}}+\frac{C F 2}{(1+r)^{\wedge} 2}+\frac{C F 3}{(1+r)^{\wedge} 3}+\frac{C F 4}{(1+r)^{\wedge} 4}+\frac{C F 5}{(1+r)^{\wedge} 5^{\prime}} \quad$ where
$C F_{0}=-600000$
$\mathrm{CF}_{1}=160000$
$\mathrm{CF}_{2}=250000$
$\mathrm{CF}_{3}=190000$
$\mathrm{CF}_{4}=180000$
$\mathrm{CF}_{5}=130000$
r=0.11 (11\%)
The calculation of PV for 5 years is shown in the table below.

Year, (t)	Net Returns CF(t),R	Present Value of annual returns, PV(t),R	Formula for PV in year t (discount rate= $r=11.00 \%$) $P V(t)=\frac{C F(t)}{(1+r)^{\wedge} t}$
1	160000	144144.1441	$\operatorname{PV}(1)=\frac{160000}{(1+0.11)^{\wedge} 1}$
2	250000	202905.6083	$P V(2)=\frac{250000}{(1+0.11)^{\wedge} 2}$
3	190000	138926.3624	$P V(3)=\frac{190000}{(1+0.11)^{\wedge} 3}$
4	180000	118571.5753	$P V(4)=\frac{180000}{(1+0.11)^{\wedge} 4}$
5	130000	77148.6726	$P V(5)=\frac{130000}{(1+0.11)^{\wedge} 5}$
Sum		681696.3629	$\mathrm{PV}_{1-5}=\sum_{t=1}^{5} P V(t)$

$$
N P V=C F 0+\frac{C F 1}{(1+r)^{\wedge} 1}+\frac{C F 2}{(1+r)^{\wedge 2}}+\frac{C F 3}{(1+r)^{\wedge 3}}+\frac{C F 4}{(1+r)^{\wedge 4}}+\frac{C F 5}{(1+r)^{\wedge}}=-600000+681696.36=81696.36
$$

Answer: Since NPV=81696.36>0, we should buy this business.

