Answer on Question #79309 – Math – Financial Math

Question

You consider buying a business for R600 000. The business is expected to run for 5 years and the following net returns are expected.

Year 1- R160 000 Year 2- R250 000 Year 3- R190 000 Year 4- R180 000 Year 5- R130 000

Should you buy the business? A project of this type is expected to return at least 11% per annum. (Show details of your calculation).

Solution

We should buy the business if NPV of this project is greater or equal to 0.

Formula: $NPV = CF0 + \frac{CF1}{(1+r)^{\Lambda_1}} + \frac{CF2}{(1+r)^{\Lambda_2}} + \frac{CF3}{(1+r)^{\Lambda_3}} + \frac{CF4}{(1+r)^{\Lambda_4}} + \frac{CF5}{(1+r)^{\Lambda_5'}}$ where $CF_0 = -600000$ $CF_1 = 160\ 000$ $CF_2 = 250\ 000$ $CF_3 = 190\ 000$ $CF_4 = 180\ 000$ $CF_5 = 130\ 000$ $r = 0.11\ (11\%)$ The calculation of PV for 5 years is shown in the table below.

			Formula for PV in year t
			(discount rate= r= 11.00%)
		Present Value of annual returns,	$PV(t) = \frac{CF(t)}{CF(t)}$
Year, (t)	Net Returns CF(t),R	PV(t),R	$FV(t) = \frac{1}{(1+r)^{t}}$
		144144.1441	160000
1	160000		$PV(1) = \frac{1}{(1+0.11)^{1}}$
		202905.6083	$PV(2) = \frac{250000}{(1+0.11)(2)}$
2	250000		(1+0.11)^2
		138926 3624	$PV(3) = \frac{190000}{190000}$
2	100000	130320.3021	(1+0.11)^3
	190000		100000
		118571.5753	$PV(4) = \frac{180000}{(1+0.11)^4}$
4	180000		(
		77148.6726	$PV(5) = \frac{130000}{(1+0.14)(5)}$
5	130000		(1+0.11)^5
	130000	691606 2620	
Sum		081090.3029	$D_{1} = \sum_{i=1}^{5} D_{i} U(t)$
Juii			$\Gamma v_{1-5} - \Delta t = 1^{\Gamma v} (t)$

 $NPV = CF0 + \frac{CF1}{(1+r)^{\wedge}1} + \frac{CF2}{(1+r)^{\wedge}2} + \frac{CF3}{(1+r)^{\wedge}3} + \frac{CF4}{(1+r)^{\wedge}4} + \frac{CF5}{(1+r)^{\wedge}5} = -600000 + 681696.36 = 81696.36$

Answer: Since NPV=81696.36>0, we should buy this business.

Answer provided by https://www.AssignmentExpert.com