ANSWER on Question \#79307 - Math - Differential Equations

QUESTION

Exact equations

$$
\left(e^{x^{2}} y\right)\left(1+2\left(x^{2}\right) y\right) d x+\left(x^{3}\right)\left(e^{x^{2}} y\right) d y=0
$$

Integrating factor:

1. Differential equation

$$
(2 x y) d x+\left(2\left(x^{2}\right)+3\right) d y=0
$$

Having an integration factor is just a function of y.
2. Differential equation

$$
\left(\left(x^{2}\right)+3 x+2\right) d x+\left(\left(x^{2}\right)+x+1\right) d y=0
$$

Having an integration factor is just a function of $(x+y)$.

SOLUTION

The first part: solve the above differential equation.

1 STEP: We transform this differential equation

$$
\begin{gathered}
\left(e^{x^{2}} y\right)\left(1+2\left(x^{2}\right) y\right) d x+\left(x^{3}\right)\left(e^{x^{2}} y\right) d y=0 \rightarrow \\
\left(e^{x^{2}} y\right)\left(1+2\left(x^{2}\right) y\right) d x=-\left(x^{3}\right)\left(e^{x^{2}} y\right) d y \left\lvert\, \div\left(\frac{-1}{d x \cdot\left(x^{3}\right)\left(e^{x^{2}} y\right)}\right) \rightarrow\right. \\
-\frac{\left(e^{x^{2}} y\right)\left(1+2\left(x^{2}\right) y\right) d x}{d x \cdot\left(x^{3}\right)\left(e^{x^{2}} y\right)}=\frac{\left(x^{3}\right)\left(e^{x^{2}} y\right) d y}{d x \cdot\left(x^{3}\right)\left(e^{x^{2}} y\right)} \rightarrow-\frac{\left(1+2\left(x^{2}\right) y\right)}{x^{3}}=\frac{d y}{d x} \rightarrow \\
\frac{d y}{d x}=-\frac{1}{x^{3}}-\frac{2 y x^{2}}{x^{3}} \rightarrow \frac{d y}{d x}=-\frac{1}{x^{3}}-\frac{2 y}{x} \rightarrow \frac{d y}{d x}+\frac{2 y}{x}=-\frac{1}{x^{3}}
\end{gathered}
$$

Conclusion,

$$
\left(e^{x^{2}} y\right)\left(1+2\left(x^{2}\right) y\right) d x+\left(x^{3}\right)\left(e^{x^{2}} y\right) d y=0 \rightarrow \frac{d y}{d x}+\frac{2 y}{x}=-\frac{1}{x^{3}}
$$

Nonhomogeneous differential equation of the first order.
2 STEP: Let us solve the transformed equation.
Since,

$$
\frac{d y}{d x}+\frac{2 y}{x}=-\frac{1}{x^{3}}
$$

Nonhomogeneous differential equation of the first order, then the solution consists of two parts:

$$
y(x)=y_{1}(x)+y_{2}(x), \text { where }\left\{\begin{array}{c}
y_{1}(x)-\text { solution of the homogeneous equation } \\
y_{2}(x)-\text { a particular solution of the nonhomogeneous equation }
\end{array}\right.
$$

2A STEP: We solve the homogeneous equation.

For the solution, we use the method of separation of variables.
(More information: https://en.wikipedia.org/wiki/Separation of variables)

$$
\begin{gathered}
\frac{d y}{d x}+\frac{2 y}{x}=0 \rightarrow \frac{d y}{d x}=-\frac{2 y}{x} \rightarrow \frac{d y}{y}=-2 \frac{d x}{x} \rightarrow \int \frac{d y}{y}=\int\left(-2 \frac{d x}{x}\right) \rightarrow \ln |y|=-2 \cdot \ln |x|+\ln |C| \rightarrow \\
\ln |y|=\ln \left|x^{-2}\right|+\ln |C| \rightarrow \ln |y|=\ln \left|C \cdot x^{-2}\right| \rightarrow y_{1}(x)=\frac{C}{x^{2}}
\end{gathered}
$$

Conclusion,

$$
\frac{d y}{d x}+\frac{2 y}{x}=0 \rightarrow y_{1}(x)=\frac{C}{x^{2}}
$$

2B STEP: We solve the nonhomogeneous equation.

For the solution, we use the method of variation of the parameter.
(More information: https://en.wikipedia.org/wiki/Variation of parameters)

$$
\begin{gathered}
\left\{\begin{array}{c}
\frac{d y}{d x}+\frac{2 y}{x}=-\frac{1}{x^{3}} \\
y(x)=\frac{C(x)}{x^{2}} \rightarrow \frac{d y}{d x}=\frac{1}{x^{2}} \cdot \frac{d C}{d x}-\frac{2 C(x)}{x^{2}}
\end{array} \rightarrow \frac{1}{x^{2}} \cdot \frac{d C}{d x}-\frac{2 C(x)}{x^{2}}+\frac{2}{x} \cdot \frac{C(x)}{x^{2}}=-\frac{1}{x^{3}} \rightarrow\right. \\
\left.\frac{1}{x^{2}} \cdot \frac{d C}{d x}=-\frac{1}{x^{3}}\left|\times\left(d x \cdot x^{2}\right) \rightarrow d C=-\frac{d x}{x} \rightarrow \int d C=\int\left(-\frac{d x}{x}\right) \rightarrow C(x)=-\ln \right| x \right\rvert\,+C_{1}
\end{gathered}
$$

Then,

$$
\left\{\begin{array} { c }
{ y (x) = \frac { C (x) } { x ^ { 2 } } } \\
{ C (x) = C _ { 1 } - \operatorname { l n } | x | }
\end{array} \rightarrow y (x) = \frac { C _ { 1 } - \operatorname { l n } | x | } { x ^ { 2 } } = \frac { C _ { 1 } } { x ^ { 2 } } - \frac { \operatorname { l n } | x | } { x } , \text { where } \left\{\begin{array}{c}
y_{1}(x)=\frac{C_{1}}{x^{2}} \\
y_{2}(x)=-\frac{\ln |x|}{x}
\end{array}\right.\right.
$$

Conclusion,

$$
\left(e^{x^{2}} y\right)\left(1+2\left(x^{2}\right) y\right) d x+\left(x^{3}\right)\left(e^{x^{2}} y\right) d y=0 \rightarrow y(x)=\frac{C_{1}}{x^{2}}-\frac{\ln |x|}{x}
$$

The second part: we solve the problems associated with the integral factor.

We recall the definition of an equation in exact differentials:

$$
M(x, y) d x+N(x, y) d y=0
$$

is exact if

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Recall another definition:

If the equation

$$
M(x, y) d x+N(x, y) d y=0
$$

is not exact, but the equation

$$
\mu(x, y) M(x, y) d x+\mu(x, y) N(x, y) d y=0
$$

is exact, then $\mu(x, y)$ is an integrating factor of equation.
We recall one theorem connected with the integral factor.
Theorem:

If

$$
\begin{gathered}
\frac{\partial M / \partial y-\partial N / \partial x}{N} \text { is continuous and depends only on } x \text {, then } \\
\mu(x)=\exp \left[\int\left(\frac{\partial M / \partial y-\partial N / \partial x}{N}\right) d x\right] \text { is an integrating factor for the } D E .
\end{gathered}
$$

If

$$
\begin{gathered}
\frac{\partial N / \partial x-\partial M / \partial y}{M} \text { is continuous and depends only on } y, \text { then } \\
\mu(y)=\exp \left[\int\left(\frac{\partial N / \partial x-\partial M / \partial y}{M}\right) d y\right] \text { is an integrating factor for the } D E .
\end{gathered}
$$

Now we can start solving the problem.

1. Differential equation

$$
(2 x y) d x+\left(2\left(x^{2}\right)+3\right) d y=0
$$

Having an integration factor is just a function of y.

In our case,

$$
\left\{\begin{array} { c }
{ M (x , y) = 2 x y } \\
{ N (x , y) = 2 x ^ { 2 } + 3 }
\end{array} \rightarrow \left\{\begin{array}{c}
\frac{\partial M}{\partial y}=2 x \\
\frac{\partial N}{\partial x}=2 \cdot 2 x=4 x
\end{array} \rightarrow \frac{\partial M}{\partial y}=2 x \neq 4 x=\frac{\partial N}{\partial x}\right.\right.
$$

Conclusion,

$$
(2 x y) d x+\left(2\left(x^{2}\right)+3\right) d y=0 \text { is not exact }
$$

We now verify the fulfillment of the conditions of the theorem:

$$
\frac{\partial N / \partial x-\partial M / \partial y}{M}=\frac{4 x-2 x}{2 x y}=\frac{2 x}{2 x y}=\frac{1}{y} \text { is continuous and depends only on } y
$$

Then,

$$
\exists \mu(y) \text { is an integrating factor for the } D E .
$$

We can easily find this integral factor, using the formula from the theorem

$$
\mu(y)=\exp \left[\int\left(\frac{\partial N / \partial x-\partial M / \partial y}{M}\right) d y\right]=\exp \left[\int\left(\frac{1}{y}\right) d y\right]=\exp (\ln y)=y \rightarrow \mu(y)=y
$$

Checking:

$$
\begin{gathered}
(2 x y) d x+\left(2\left(x^{2}\right)+3\right) d y=0 \mid \times(y) \rightarrow\left(2 x y^{2}\right) d x+\left(2 y x^{2}+3 y\right) d y=0 \rightarrow \\
\left\{\begin{array} { c }
{ M (x , y) = 2 x y ^ { 2 } } \\
{ N (x , y) = (2 x ^ { 2 } y + 3 y) }
\end{array} \rightarrow \left\{\begin{array}{c}
\frac{\partial M}{\partial y}=4 x y \\
\frac{\partial N}{\partial x}=2 \cdot 2 x y=4 x y
\end{array} \rightarrow \frac{\partial M}{\partial y}=4 x y=\frac{\partial N}{\partial x}\right.\right.
\end{gathered}
$$

Conclusion,

$$
\left(2 x y^{2}\right) d x+\left(2 y x^{2}+3 y\right) d y=0 \text { is exact }
$$

2. Differential equation

$$
\left(\left(x^{2}\right)+3 x+2\right) d x+\left(\left(x^{2}\right)+x+1\right) d y=0
$$

Having an integration factor is just a function of $(x+y)$.
In our case,

$$
\left\{\begin{array} { c }
{ M (x , y) = x ^ { 2 } + 3 x + 2 } \\
{ N (x , y) = x ^ { 2 } + x + 1 }
\end{array} \rightarrow \left\{\begin{array}{c}
\frac{\partial M}{\partial y}=0 \\
\frac{\partial N}{\partial x}=2 x+1
\end{array} \rightarrow \frac{\partial M}{\partial y}=0 \neq 2 x+1=\frac{\partial N}{\partial x}\right.\right.
$$

Conclusion,

$$
\left(\left(x^{2}\right)+3 x+2\right) d x+\left(\left(x^{2}\right)+x+1\right) d y=0 \text { is not exact }
$$

We now verify the fulfillment of the conditions of the theorem:

$$
\frac{\partial M / \partial y-\partial N / \partial x}{N}=\frac{0-(2 x+1)}{x^{2}+x+1}=-\frac{2 x+1}{x^{2}+x+1} \text { is continuous and depends only on } x
$$

Then,

$$
\exists \mu(x) \text { is an integrating factor for the } D E .
$$

We can easily find this integral factor, using the formula from the theorem

$$
\begin{aligned}
& \mu(x)=\exp \left[\int\left(\frac{\partial M / \partial y-\partial N / \partial x}{N}\right) d x\right]=\exp \left[\int\left(-\frac{2 x+1}{x^{2}+x+1}\right) d x\right]=\left[\begin{array}{c}
x^{2}+x+1=t \\
(2 x+1) d x=d t
\end{array}\right]= \\
& \quad=\exp \left[\int\left(-\frac{1}{t}\right) d t\right]=\exp [-\ln |t|]=\exp \left[\ln \left|\frac{1}{t}\right|\right]=\frac{1}{t}=\frac{1}{x^{2}+x+1} \rightarrow \mu(x)=\frac{1}{x^{2}+x+1}
\end{aligned}
$$

Checking:

$$
\begin{gathered}
\left(\left(x^{2}\right)+3 x+2\right) d x+\left(\left(x^{2}\right)+x+1\right) d y=0 \left\lvert\, \times\left(\frac{1}{x^{2}+x+1}\right) \rightarrow\right. \\
\frac{\left(x^{2}+3 x+2\right)}{x^{2}+x+1} d x+\frac{\left(x^{2}+x+1\right)}{x^{2}+x+1} d y=0 \rightarrow\left(\frac{x^{2}+3 x+2}{x^{2}+x+1}\right) \cdot d x+1 \cdot d y=0 \\
\left\{\begin{array} { c }
{ M (x , y) = \frac { x ^ { 2 } + 3 x + 2 } { x ^ { 2 } + x + 1 } } \\
{ N (x , y) = 1 }
\end{array} \rightarrow \left\{\begin{array}{l}
\frac{\partial M}{\partial y}=0 \\
\frac{\partial N}{\partial x}=0
\end{array} \rightarrow \frac{\partial M}{\partial y}=0=\frac{\partial N}{\partial x}\right.\right.
\end{gathered}
$$

Conclusion,

$$
\left(\frac{x^{2}+3 x+2}{x^{2}+x+1}\right) \cdot d x+1 \cdot d y=0 \text { is exact }
$$

ANSWER:

$$
\left(e^{x^{2}} y\right)\left(1+2\left(x^{2}\right) y\right) d x+\left(x^{3}\right)\left(e^{x^{2}} y\right) d y=0 \rightarrow y(x)=\frac{C_{1}}{x^{2}}-\frac{\ln |x|}{x}
$$

1.

$$
\begin{aligned}
& \mu(y)=y \text { is an integrating factor for the } D E \\
& \mu(y)=y \text { is a function only of the variable } y
\end{aligned}
$$

2.

$$
\begin{gathered}
\mu(x)=x^{2}+x+1 \text { is an integrating factor for the } D E \\
\mu(x)=x^{2}+x+1 \text { is not a function of a variable }(x+y)
\end{gathered}
$$

