ANSWER on Question #79307 — Math - Differential Equations

QUESTION

Exact equations

(e y)(1 + 2(x?)y)dx + (x3)(e¥’y)dy = 0
Integrating factor:
1. Differential equation

2xy)dx + (2(x?) +3)dy =0

Having an integration factor is just a function of y.

2. Differential equation
((x®) +3x+2)dx+ ((x*)+x+1dy=0
Having an integration factor is just a function of (x + y).
SOLUTION
The first part: solve the above differential equation.

1 STEP: We transform this differential equation
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Nonhomogeneous differential equation of the first order.
2 STEP: Let us solve the transformed equation.

Since,
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Nonhomogeneous differential equation of the first order, then the solution consists of two parts:

y1(x) — solution of the homogeneous equation
y2(x) — a particular solution of the nonhomogeneous equation

y(x) = y1(x) + y2(x), where {
2A STEP: We solve the homogeneous equation.

For the solution, we use the method of separation of variables.

( More information: https://en.wikipedia.org/wiki/Separation of variables )

d 2 d 2 d
dy 2y dy_ 2

dy
ot = == j J 2— - In|y| = =2 - In|x| + In|C| »

C
In|y| = In|x72| + In|C| = In|]y| = In|C - x7?| - y,(x) = ")

Conclusion,

dy 2y C
a"‘_—o—’)ﬁ(x):x—z

2B STEP: We solve the nonhomogeneous equation.
For the solution, we use the method of variation of the parameter.

( More information: https://en.wikipedia.org/wiki/Variation of parameters )
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https://en.wikipedia.org/wiki/Separation_of_variables
https://en.wikipedia.org/wiki/Variation_of_parameters

Then,

Conclusion,
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The second part: we solve the problems associated with the integral factor.
We recall the definition of an equation in exact differentials:

M(x,y)dx + N(x,y)dy =0
is exact if

oM oN
dy  0x

Recall another definition:
If the equation
M(x,y)dx + N(x,y)dy =0
is not exact, but the equation
u(x, yIM(x, y)dx + u(x, y)N(x,y)dy = 0
is exact, then u(x, y) is an integrating factor of equation.

We recall one theorem connected with the integral factor.

Theorem:
If
OM/dy —dN/ox ]
N is continuous and depends only on x,then
oM /0y — dN /ox ] ] ]
u(x) = exp f N dx| is an integrating factor for the DE.
If

ON/d0x — oM /oy
M

is continuous and depends only on y,then

dN/d0x — oM /dy ] ) )
u(y) = exp j I dy| is an integrating factor for the DE.

Now we can start solving the problem.



1. Differential equation

2xy) dx + 2(x?) +3)dy =0

Having an integration factor is just a function of y.

In our case,
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Conclusion,

|(2xy) dx + (2(x?) + 3)dy = 0 is not exact

We now verify the fulfillment of the conditions of the theorem:

ON/dx —0OM/dy 4x—-2x 2x 1 )
= = = ; is continuous and depends only ony

M 2xy 2xy
Then,
Au(y) is an integrating factor for the DE.

We can easily find this integral factor, using the formula from the theorem

1) = exp U <6N/0x ;/I(')M/a)’) dyl = exp U G) dy] =exp(lny) =y -

Checking:
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Conclusion,

(2xy?) dx + (2yx? + 3y)dy = 0 is exact




2. Differential equation
((x*)+3x+2)dx+ (x*) +x+ 1)dy =0
Having an integration factor is just a function of (x + y).

In our case,
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Conclusion,

((x®) +3x + 2)dx + ((x?) + x + 1)dy = 0 is not exact

We now verify the fulfillment of the conditions of the theorem:
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is continuous and depends only on x

Then,

Ju(x) is an integrating factor for the DE.

We can easily find this integral factor, using the formula from the theorem
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Checking:
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x2+3x+2 bt 1-dv =0 .
prp—— x y = 0 is exac
ANSWER:
C; In|x
(exzy)(l + 2(x®)y)dx + (x3)(ex2y)dy =0-ykx) = x—; - 9|c |
1.
u(y) = yis an integrating factor for the DE
u(y) = yis a function only of the variable y
2.

u(x) = x? + x + 1is an integrating factor for the DE

p(x) = x* + x + 1 is not a function of a variable (x + y)
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