

Answer on Question #79286 – Math – Calculus

Question

Intravenous infusion of glucose into the blood-stream of a patient is an important medical technique. To study this process, let $G(t)$ be the amount of glucose in the patient's blood stream t minutes after the process begins. Assume that glucose is infused into the bloodstream at a constant rate of k (in g/min). Also assume that at the same time, the glucose is converted and removed from the bloodstream at a rate proportional to the amount of glucose still present, with the proportionality constant r .

Solution

The rate of change of glucose due to infusion is given by k . The rate of change of glucose due to the conversion is given by $-rG(t)$. Thus the total rate of change of $G(t)$ is given by

$$G'(t) = k - rG(t)$$

Since k and r are constants, the solution of this equation is easy to find:

$$G(t) = Ce^{-rt} + \frac{k}{r},$$

where C is some constant.

In order to find C we must consider the case $t = 0$:

$$\begin{aligned} G(0) &= C + \frac{k}{r} \\ C &= G(0) - \frac{k}{r} \end{aligned}$$

Thus we get

$$G(t) = G(0)e^{-rt} + \frac{k}{r}(1 - e^{-rt})$$

Answer: $G(t) = G(0)e^{-rt} + \frac{k}{r}(1 - e^{-rt})$.