Answer on Question #79269 – Math – Analytic Geometry

Question

1. Find the point of intersection of the following pairs of lines whose equations are given.

Solution

We will find the point of intersection of the following pairs of lines whose equations are given if we make a system of two equations and solve it.

> a) x + 3y = 9 and 5x - 2y = 11. The system of equations:

$$\begin{cases} x + 3y = 9, \\ 5x - 2y = 11. \end{cases}$$

Solve the system of equations by substitution method. For this solve the first equation for x:

$$x = 9 - 3y$$
.

Substitute the expression 9 - 3y for x into the second equation:

$$\begin{cases} x = 9 - 3y, \\ 5(9 - 3y) - 2y = 11. \end{cases}$$

Solve the second equation for y:

$$\begin{cases} x = 9 - 3y, \\ 45 - 15y - 2y = 11; \\ \begin{cases} x = 9 - 3y, \\ -17y = -34; \\ \\ x = 9 - 3y, \\ y = 2. \end{cases}$$

Plug in 2 for y into the equation x = 9 - 3y to find x's value.

$$\mathbf{x} = 9 - 3 \cdot 2,$$

x = 3.

Check the proposed ordered pair solution in both original equations.

We find that if we plug the ordered pair (3; 2) into both equations of the original system, that this is a solution to both of them.

(3; 2) is a solution to our system.

Answer: (3; 2) is the point of intersection of the pairs of lines whose equations are x + 3y = 9 and 5x - 2y = 11.

b)
$$4x + 3y = 8$$
 and $6x - 2y = -14$.

The system of equations:

$$\begin{cases} 4x + 3y = 8, \\ 6x - 2y = -14. \end{cases}$$

Solve the system of equations by elimination method. Multiply the first equation by 2 and the second equation by 3:

$$\begin{cases} 4x + 3y = 8, \\ 6x - 2y = -14. \end{cases}$$

We get:

 $\begin{cases} 8x + 6y = 16, \\ 18x - 6y = -42. \end{cases}$

Add equations:

$$26x = -26.$$

Solve for x:

x = -1.

Simplify the second equation:

$$2y = 6x + 14;$$

 $y = \frac{1}{2}(6x + 14).$

Plug in -1 for x into the second simplified equation to find y's value:

$$y = \frac{1}{2}(6 \cdot (-1) + 14),$$

y = 4.

Check the proposed ordered pair solution in both original equations.

We find that if we plug the ordered pair (-1; 4) into both equations of the original system, that this is a solution to both of them.

(-1; 4) is a solution to our system.

Answer: (-1; 4) is the point of intersection of the pairs of lines whose equations are 4x + 3y = 8 and 6x - 2y = -14.

c)
$$3x + 2y - 7 = 0$$
 and $5x - 6y = 7$.

The system of equations:

$$\begin{cases} 3x + 2y - 7 = 0, \\ 5x - 6y = 7. \end{cases}$$

Solve the system of equations by elimination method. Multiply the first equation by 3 and simplify it:

$$\begin{cases} 3x + 2y - 7 = 0, \\ 5x - 6y = 7. \end{cases} 3$$

We get:

$$\begin{cases} 9x + 6y = 21, \\ 5x - 6y = 7. \end{cases}$$

Add equations:

14x = 28.

Solve for x:

x = 2.

Simplify the first equation:

$$2y = -3x + 7;$$
$$y = \frac{1}{2}(-3x + 7).$$

Plug in 2 for x into the first simplified equation to find y's value:

$$y = \frac{1}{2}(-3 \cdot 2 + 7),$$

$$y = \frac{1}{2}.$$

Check the proposed ordered pair solution in both original equations.

We find that if we plug the ordered pair $(2; \frac{1}{2})$ into both equations of the original system, that this is a solution to both of them.

(2; $\frac{1}{2}$) is a solution to our system.

Answer: (2; $\frac{1}{2}$) is the point of intersection of the pairs of lines whose equations are 3x + 2y - 7 = 0 and 5x - 6y = 7.

Question

2. Find the equation of the straight line which passes through the origin and through the point of intersection of the lines 4x - y - 3 = 0 and x + 2y - 12 = 0.

Solution

Find the point of intersection of the lines 4x - y - 3 = 0 and x + 2y - 12 = 0.

Make a system of two equations and solve it:

$$\begin{cases} 4x - y - 3 = 0, \\ x + 2y - 12 = 0. \end{cases}$$

Simplify both equations:

$$\begin{cases} 4x - y = 3, \\ x + 2y = 12. \end{cases}$$

Solve the system of equations by elimination method. Multiply the first equation by 2:

$$\begin{cases} 4x - y = 3, \\ x + 2y = 12. \end{cases} 2$$

We get:

$$\begin{cases} 8x - 2y = 6, \\ x + 2y = 12. \end{cases}$$

Add equations:

$$9x = 18.$$

Solve for x:

x = 2.

Simplify the first equation:

$$y = 4x - 3.$$

Plug in 2 for x into the first simplified equation to find y's value:

$$y = 4 \cdot 2 - 3,$$
$$y = 5.$$

Check the proposed ordered pair solution in both original equations.

We find that if we plug the ordered pair (2; 5) into both equations of the original system, that this is a solution to both of them.

(2; 5) is a solution to our system.

(2; 5) is the point of intersection of the pairs of lines 4x - y - 3 = 0 and

x + 2y - 12 = 0.

Write a formula for the equation of a line from 2 points:

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1}.$$

Find the equation of a line from 2 points: (2; 5) and (0; 0).

$$\frac{x-2}{-2} = \frac{y-5}{-5}.$$

Solve this equation:

$$-5x + 10 = -2y + 10,$$

$$-5x + 2y = 0.$$

Answer: -5x + 2y = 0 is the equation of the straight line which passes through the origin and through the point of intersection of the lines 4x - y - 3 = 0 and x + 2y - 12 = 0.

Answer provided by https://www.AssignmentExpert.com