Answer on Question \#79263 - Math - Algebra

Question

1. Show that $1+1 / \sqrt{2}+\ldots+1 / \sqrt{n} \geq \sqrt{\{2(n-1)\}}$ for $n \in N, \mathrm{n}>1$. (Solve using inequalities).

Solution

Consider the right-hand side of the inequality:

$$
\sqrt{\{2(n-1)\}}
$$

Fractional part of the number by definition:

$$
\begin{gathered}
\{2(n-1)\}=2(n-1)-[2(n-1)] \\
0 \leq\{2(n-1)\}<1 \\
0 \leq\{2 n-2\}<1
\end{gathered}
$$

2 is an integer, so:

$$
\begin{gathered}
\{2 n-2\}=\{2 n\} \\
0 \leq\{2 n\}<1
\end{gathered}
$$

By condition $n \in N$ and $\mathrm{n}>1$. We know that $N \in Z=>2 n \in Z=>\{2 n\}=0$
So:

$$
\begin{aligned}
\sqrt{\{2(n-1)\}} & =0 \\
\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{n}} & =\sum_{n=2}^{\infty} \frac{1}{\sqrt{n}}
\end{aligned}
$$

When $n=2$ (it's minimal value of n):

$$
\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}>0
$$

Proved.

