Answer on Question \#79260 - Math - Algebra

Question

Write an odd natural number as a sum of two integers ml and m 2 in a way that m 1 m 2 is maximum. Solve using inequalities

Solution

Let the odd number be $2 n+1$
and let us divide it in two numbers x and $2 n+1-x$
then their product is $2 n x+x-x^{2}$
The product will be maximum if dydx $=0$, where

$$
y=f(x)=2 n x+x-x^{2}
$$

and hence for maxima $\frac{d y}{d x}=2 n+1-2 x=0$
or $x=\frac{2 n+1}{2}=n+\frac{1}{2}$
but as $2 n+1$ is odd, x is a fraction.
But as x has to be an integer, we can have the integers as n and $n+1$ i.e. one integer just less than half the number and other integer just more than half the number. If the number is $2 n+1$, the numbers are n and $n+1$.
For example, if number is 37 , the two numbers $m 1$ and $m 2$ would be 18 and 19 and their product 342 would be the maximum one can have if 37 is split in two integers.

Answer:

One integer just less than half the number and other integer just more than half the number. If the number is $2 n+1$, the numbers are n and $n+1$.

