Answer on Question \#79252 - Math - Analytic Geometry

Question

A cooling tower for a nuclear reactor is to be constructed in the shape of a hyperboloid of one sheet. The diameter at the base is 260 m and the minimum diameter, 500 m above the base, is 200 m . Find an equation for the tower. (Assume the position of the hyperboloid is such that the center is at the origin with its axis along the z-axis, and the minimum diameter at the center.)

Solution

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1
$$

We have points:

$$
(200,200,0),(260,260,500)
$$

Then:

$$
a=b=200 \sqrt{2}
$$

and:

$$
\begin{gathered}
\frac{67600}{80000}+\frac{67600}{80000}-\frac{250000}{c^{2}}=1 \\
\frac{676}{800}+\frac{676}{800}-\frac{250000}{c^{2}}=1 \\
\frac{169}{100}-1=\frac{250000}{c^{2}} \\
c=\sqrt{\frac{250000}{0.69}} \\
\frac{x^{2}}{80000}+\frac{y^{2}}{80000}-\frac{z^{2}}{362319}=1 .
\end{gathered}
$$

Answer: $\frac{x^{2}}{80000}+\frac{y^{2}}{80000}-\frac{z^{2}}{362319}=1$.

