Answer on Question #79165 – Math – Calculus

Question

Find the domain of the function defined by $f(x) = \sqrt{9x^3 - x^4}$.

Solution

The domain of the function $f(x) = \sqrt{9x^3 - x^4}$ is the set of those x for which the expression inside the radical is nonnegative, hence we get the inequality $9x^3 - x^4 \ge 0$. To solve the inequality, we use the test-point method.

First solve the equation:

$$9x^{3} - x^{4} = 0;$$

 $x^{3}(9 - x) = 0;$
 $x^{3} = 0 \text{ or } 9 - x = 0;$
 $x = 0 \text{ or } x = 9;$

We use these points to mark intervals on the number line and then we find sign of the factors in each interval.

We choose, for example, the number (-1) on the first interval $(-\infty; 0)$. We get $9x^3 - x^4 = [for x = -1] = 9(-1)^3 - (-1)^4 = -9 - 1 = -10 < 0$.

We choose, for example, the number (1) on the second interval (0; 9). We get $9x^3 - x^4 = [for x = 1] = 9(1)^3 - (1)^4 = 9 - 1 = 8 > 0$.

We choose, for example, the number 10 on the third interval $(9; +\infty)$. We get $9x^3 - x^4 = [for x = 10] = 9(10)^3 - (10)^4 = 9000 - 10000 = -1000 < 0$.

At the boundary points 0 and 9 the expression $9x^3 - x^4$ is zero, so, there is one closed interval [0;9], where $9x^3 - x^4 \ge 0$.

Therefore, the domain of the function $f(x) = \sqrt{9x^3 - x^4}$ is the closed interval [0;9]. **Answer:** [0;9].