Answer on Question \#79165 - Math - Calculus

Question

Find the domain of the function defined by $f(x)=\sqrt{9 x^{3}-x^{4}}$.

Solution

The domain of the function $f(x)=\sqrt{9 x^{3}-x^{4}}$ is the set of those x for which the expression inside the radical is nonnegative, hence we get the inequality $9 x^{3}-x^{4} \geq 0$.
To solve the inequality, we use the test-point method.
First solve the equation:

$$
\begin{aligned}
& 9 x^{3}-x^{4}=0 \\
& x^{3}(9-x)=0 \\
& x^{3}=0 \text { or } 9-x=0 \\
& x=0 \text { or } x=9
\end{aligned}
$$

We use these points to mark intervals on the number line and then we find sign of the factors in each interval.
We choose, for example, the number (-1) on the first interval $(-\infty ; 0)$. We get $9 x^{3}-x^{4}=[$ for $x=-1]=9(-1)^{3}-(-1)^{4}=-9-1=-10<0$.
We choose, for example, the number (1) on the second interval ($0 ; 9$). We get $9 x^{3}-x^{4}=[$ for $x=1]=9(1)^{3}-(1)^{4}=9-1=8>0$.
We choose, for example, the number 10 on the third interval $(9 ;+\infty)$. We get $9 x^{3}-x^{4}=[$ for $x=10]=9(10)^{3}-(10)^{4}=9000-10000=-1000<0$.

At the boundary points 0 and 9 the expression $9 x^{3}-x^{4}$ is zero, so, there is one closed interval [0;9], where $9 x^{3}-x^{4} \geq 0$.
Therefore, the domain of the function $f(x)=\sqrt{9 x^{3}-x^{4}}$ is the closed interval [0;9].
Answer: [0;9].

