Answer on Question \#79086 - Math - Calculus

Question

Differentiate $\tan ^{\wedge}-1\{(\sin x-\cos x) /(\sin x+\cos x)\}$ with respect to $x / 2$.

Solution

$$
\text { Let, } \begin{aligned}
\mathrm{a}=\tan ^{-1}[& \left.\frac{(\sin \mathrm{x}-\cos \mathrm{x})}{(\sin \mathrm{x}+\cos \mathrm{x})}\right] \\
& =\tan ^{-1}\left[\frac{(\tan \mathrm{x}-1)}{(\tan \mathrm{x}+1)}\right] \quad\left[\text { As, } \frac{(\sin \mathrm{x}-\cos \mathrm{x})}{(\sin \mathrm{x}+\cos \mathrm{x})}=\frac{\frac{(\sin x-\cos x)}{\cos x}}{\frac{(\sin x+\cos x)}{\cos x}}=\frac{(\tan \mathrm{x}-1)}{(\tan \mathrm{x}+1)}\right] \\
& =\tan ^{-1}\left[\tan \left(\mathrm{x}-\frac{\pi}{4}\right)\right] \quad\left[\text { As, } \tan \frac{\pi}{4}=1 \text { and } \tan (\mathrm{a}-\mathrm{b})=\frac{(\tan a-\tan b)}{(\tan a \cdot \tan b+1)}\right] \\
& =\left(x-\frac{\pi}{4}\right)
\end{aligned}
$$

Now differentiate a with respect to x we get, $\frac{d a}{d x}=1$
Again say, $\mathrm{b}=\frac{x}{2}$
Now differentiate b with respect to x we get, $\frac{\mathrm{db}}{\mathrm{dx}}=\frac{1}{2}$
So, $\frac{d a}{d b}=\frac{\frac{d a}{d x}}{\frac{d b}{d x}}=\frac{1}{\frac{1}{2}}=2$.
Answer: $\frac{d a}{d b}=2$.

