Answer on Question #79081 – Math – Calculus Question

Find the intervals in *R* over which integration of $(t + 1)^3 e^t dt$ within limit -1 to *x* is decreasing.

Solution

Use the second fundamental theorem of calculus.

If *f* is continuous on open interval *I* containing *a*, then for every *x* in the interval:

$$\frac{d}{dx}\left[\int_{a}^{x} f(t) dt\right] = F'(x) = f(x)$$

Then

$$\frac{d}{dx} \left[\int_{-1}^{x} (t+1)^3 e^t \, dt \right] = (x+1)^3 e^x$$

If $(x+1)^3 e^x < 0$, then $\frac{d}{dx} \left[\int_{-1}^{x} (t+1)^3 e^t \, dt \right] < 0$ and $\int_{-1}^{x} (t+1)^3 e^t \, dt$ is

decreasing.

 $(x+1)^3 e^x < 0 => x < -1$ $x \in (-\infty, -1)$ **Answer**: $x \in (-\infty, -1)$.