Answer on Question \#79081 - Math - Calculus Question

Find the intervals in R over which integration of $(t+1)^{3} e^{t} d t$ within limit -1 to x is decreasing.

Solution

Use the second fundamental theorem of calculus.
If f is continuous on open interval I containing a, then for every x in the interval:

$$
\frac{d}{d x}\left[\int_{a}^{x} f(t) d t\right]=F^{\prime}(x)=f(x)
$$

Then

$$
\frac{d}{d x}\left[\int_{-1}^{x}(t+1)^{3} e^{t} d t\right]=(x+1)^{3} e^{x}
$$

$\operatorname{If}(x+1)^{3} e^{x}<0$, then $\frac{d}{d x}\left[\int_{-1}^{x}(t+1)^{3} e^{t} d t\right]<0$ and $\int_{-1}^{x}(t+1)^{3} e^{t} d t$ is decreasing.
$(x+1)^{3} e^{x}<0=>x<-1$
$x \in(-\infty,-1)$
Answer: $x \in(-\infty,-1)$.

