Answer on Question \#79065 - Math - Calculus

Question

Find the maxima and minima, if any, for the function f given by
$f(x)=x^{\wedge} 4-14 x^{\wedge} 2+24 x+6$
Also find the values of the function at those points.

Solution

In order to find the extremums of a function (here we consider the case of functions with single variable), one should calculate its first derivative

$$
\begin{equation*}
f^{\prime}(x)=4 x^{3}-28 x+24 \tag{1}
\end{equation*}
$$

and find the roots of the equation

$$
\begin{equation*}
f^{\prime}(x)=0 \tag{2}
\end{equation*}
$$

The simplest way of solving (2) with expression (1) consists in "guessing" the value of one of its roots (let it be x_{1}) and lowering the power of the initial polynomial by dividing it on the value $\left(x-x_{1}\right)$. It is easy to check that $x_{1}=1$. As a result, expression (1) can be factorized as

$$
\begin{equation*}
f^{\prime}(x)=4(x-1)\left(x^{2}+x-6\right), \tag{3}
\end{equation*}
$$

It is quite simple to factorize the remaining part by obtaining the roots of the quadratic equation:

$$
\begin{gather*}
x_{2,3}=\frac{-1 \pm \sqrt{1+4 \cdot 6}}{2}, \quad x_{2}=2, \quad x_{3}=-3, \\
f^{\prime}(x)=4(x-1)(x-2)(x+3) . \tag{4}
\end{gather*}
$$

In order to distinguish between local minimums and maximums of the function, one should calculate the second derivative of the function and check its sign at points x_{1}, x_{2} and x_{3}. The rule states that maximums are located at points where $f^{\prime \prime}\left(x_{i}\right)<0$ and minimums - where $f^{\prime \prime}\left(x_{i}\right)>0$.

$$
f^{\prime \prime}(x)=12 x^{2}-28
$$

$$
\begin{gather*}
f^{\prime \prime}(1)=-16<0, \\
f^{\prime \prime}(2)=20>0, \\
f^{\prime \prime}(-3)=80>0 \tag{5}
\end{gather*}
$$

Hence, the points $x_{2}=2$ and $x_{3}=-3$ correspond to local minimums whereas the point $x_{1}=1$ gives a local maximum.

Finally, substituting these values into the initial function, we obtain:
$(1,17)$ is a local maximum; $(2,14)$ and $(-3,-111)$ are local minimums.
Answer: $(1,17)$ is a local maximum; $(2,14)$ and $(-3,-111)$ are local minimums.

