Answer on Question \#79033 - Math - Calculus

Question

Show that the functions $f(x, y)=\ln x-\ln y$ and $g(x, y)=\frac{x^{2}+2 y^{2}}{2 x y}$ are functionally dependent.

Solution

Definition

Two functions $f(x, y)$ and $g(x, y)$ defined in a domain D are functionally dependent if there exists a continuously differentiable function $\varphi(u, v)$ such that 1. $\varphi(f(x, y), g(x, y)) \equiv 0$.
2. $\nabla \varphi \neq 0$ at each point $(u, v)=(f(x, y), g(x, y))$ for (x, y) in D.

Theorem

Let F be a differentiable transformation defined by

$$
F:\left\{\begin{array}{l}
u=f(x, y) \\
v=g(x, y)
\end{array}\right.
$$

If $f(x, y)$ and $g(x, y)$ are functionally dependent, then the Jacobian of F is identically zero.

In this problem,
$f(x, y)=\ln x-\ln y, \quad g(x, y)=\frac{x^{2}+2 y^{2}}{2 x y}$
$x>0, y>0$
We start by finding the Jacobian
$f_{x}=\frac{1}{x}, f_{y}=-\frac{1}{y}$
$g_{x}=\frac{\partial}{\partial x}\left(\frac{1}{2 y} x+y\left(\frac{1}{x}\right)\right)=\frac{1}{2 y}-\frac{y}{x^{2}}, \quad g_{y}=\frac{\partial}{\partial y}\left(\frac{1}{2 y} x+y\left(\frac{1}{x}\right)\right)=-\frac{x}{2 y^{2}}+\frac{1}{x}$
$\operatorname{det} J=\operatorname{det}\left[\frac{\partial(f, g)}{\partial(x, y)}\right]=\left|\begin{array}{cc}f_{x} & f_{y} \\ g_{x} & g_{y}\end{array}\right|=f_{x} g_{y}-f_{y} g_{x}=$
$=\frac{1}{x}\left(-\frac{x}{2 y^{2}}+\frac{1}{x}\right)-\left(-\frac{1}{y}\right)\left(\frac{1}{2 y}-\frac{y}{x^{2}}\right)=$
$=-\frac{1}{2 y^{2}}+\frac{1}{x^{2}}+\frac{1}{2 y^{2}}-\frac{1}{x^{2}} \equiv 0$
Thus we are led to seek a functional relationship. By elementary manipulations we can rewrite f and g in the form,
$f(x, y)=\ln x-\ln y=\ln \left(\frac{x}{y}\right)=>\frac{x}{y}=e^{f(x, y)}$
$g(x, y)=\frac{x^{2}+2 y^{2}}{2 x y}=\frac{1}{2}\left(\frac{x}{y}\right)+\frac{1}{\left(\frac{x}{y}\right)}$
Then
$g(x, y)=\frac{1}{2} e^{f(x, y)}+e^{-f(x, y)}$
So that f and g are functionally dependent.

