Answer on Question \#78963 - Math - Statistics and Probability

Question

The intelligence quotients (IQs) of 16 students from one area of a city showed a mean of 107 and a standard deviation of 10, while IQ of 14 students from another area of the city showed a mean of 112 and a standard deviation of 8 . Is there a significant difference between IQs of the two groups at significance level of (a) 0.01 and (b) 0.05 ?

Solution

Performing independent samples t-test, not assuming equal variances.

Assumptions: both populations must be normal.
The null hypothesis: the mean IQs are equal.

The alternative hypothesis: the mean IQs are different.
Degrees of freedom: $d f=\min (N 1, N 2)-1=13$

The standard error:
$S E=\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}=\sqrt{\frac{10^{2}}{16}+\frac{8^{2}}{14}}=3.2896$

The test statistics:
$t=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-0}{S E}=\frac{107-112}{3.2896}=-1.52$
The two-tailed cumulative probability value associated with the given t-statistic can be determined from the Student's t-distribution table or calculated using the technology (function T.DIST.2T() of MS Excel).

For $d f=13$ and $t=-1.52, p=0.152$

Since the p-value is greater than both α values, fail to reject the null hypothesis at both significance levels.

The samples do not provide sufficient evidence to conclude the difference between the mean IQs.

Answer provided by https://www.AssignmentExpert.com

