Answer on Question \#78937 - Math - Discrete Mathematics

Question

a) Simplify the Boolean function $F=A B+(A C)^{\prime}+A B{ }^{\prime} C(A B+C)$.

Solution

$A B+(A C)^{\prime}+A B{ }^{\prime} C(A B+C)=A B+A^{\prime}+C^{\prime}+A B B^{\prime} C+A B{ }^{\prime} C$ (according to formulas 1, 2 and 3) $A B+A^{\prime}+C^{\prime}+A B B^{\prime} C+A B^{\prime} C=A B+A^{\prime}+C^{\prime}+A B$ ' C (according to formulas 4 and 5)
$A B+A^{\prime}+C^{\prime}+A B^{\prime} C=A^{\prime}+B+C^{\prime}+A B^{\prime} C$ (according to formula 8)
$A^{\prime}+B+C^{\prime}+A B^{\prime} C=A^{\prime}+C^{\prime}+\left(B+A B^{\prime} C\right)$
$A^{\prime}+C^{\prime}+\left(B+A B{ }^{\prime} C\right)=A^{\prime}+C^{\prime}+(B+A C)$ (according to formula 8)
$A^{\prime}+C^{\prime}+(B+A C)=A^{\prime}+B+C^{\prime}+A C$
$A^{\prime}+B+C^{\prime}+A C=A^{\prime}+B+C^{\prime}+C$ (according to formula 8)
$A^{\prime}+B+C^{\prime}+C=A^{\prime}+B^{\prime}+1$ (according to formula 6)
$A^{\prime}+B+1=1$ (according to formula 7)

Formula 1 (OR Distributive law): $A(B+C)=A B+A C$
Formula 2: $(A B)^{\prime}=A^{\prime}+B^{\prime}$
Formula 3: $A A=A$
Formula 4: $A A^{\prime}=0$
Formula 5: $A+0=A$
Formula 6: $A+A^{\prime}=1$
Formula 7: $A+1=A^{\prime}+1=1$
Formula 8: $A B+A^{\prime}=A^{\prime}+B \Leftrightarrow A$ ' $B+A=A+B$
Proof of formula 8:
Formula 8.1 (AND Distributive law): $A+(B C)=(A+B)(A+C)$
$A^{\prime} B+A=\left(A+A^{\prime}\right)(A+B)$ (according to formula 8.1)
$\left(A+A^{\prime}\right)(A+B)=1(A+B)($ according to formula 6$)$
$1(A+B)=A+B$
$A B+A^{\prime}=\left(A^{\prime}+A\right)\left(A^{\prime}+B\right)$ (according to formula 8.1)
$\left(A^{\prime}+A\right)\left(A^{\prime}+B\right)=1\left(A^{\prime}+B\right)($ according to formula 6$)$
$1\left(A^{\prime}+B\right)=A^{\prime}+B$

Answer: $\mathrm{F}=1$.

