Answer on Question \#78930 - Math - Other

Question

A firm uses two inputs, K and L to manufacture final product. The price per unit of these inputs is sh. 20 and sh. 4 respectively. What combination of inputs should a firm use to maximize output given that the budget is fixed at sh. 390 ?

Solution

Let $x=$ the number of units of the finished product manufactured in K input, $y=$ the number of units of the finished product manufactured in L input.
The total number of product produced is

$$
U(x, y)=x+y
$$

The price per unit of these inputs is sh. 20 and sh. 4 respectively. Then, the total cost is

$$
C(x, y)=20 x+4 y
$$

Since the budget is fixed at sh. 390

$$
20 x+4 y \leq 390
$$

Find the maximum value of the function $U(x, y)$, if

$$
\left\{\begin{array}{c}
U(x, y)=x+y \\
20 x+4 y \leq 390 \\
x \in\{0,1,2, \ldots\}, y \in\{0,1,2, \ldots\}
\end{array}\right.
$$

$20 x+4 y=390$
Solve for y
$y=\frac{195}{2}-5 x$
Substitute
$U(x)=x+\frac{195}{2}-5 x$
$U(x)=\frac{195}{2}-4 x$
Find the maximum value of the function $U(x)$, if

$$
\left\{\begin{array}{c}
U(x)=\frac{195}{2}-4 x \\
x \in\{0,1,2, \ldots\}
\end{array}\right.
$$

Linear function $U(x)$ decreases for $x \in[0, \infty)$. Then the maximum value of the function $U(x)$ is $\frac{195}{2}$ at $x=0$.
Since $y \in\{0,1,2, \ldots\}$ and $20 x+4 y \leq 390$ then $y=97$.
Answer: the firm uses the only L input and manufactures 97 units of the finished product.

