Answer on Question #78914 – Math – Statistics and Probability

We need to check the hypothesis

$$H_0: \mu_1 = \mu_2 \qquad vs. \qquad H_a: \mu_1 \neq \mu_2$$

with the significance level (a) $\alpha = 0.01$, (b) $\alpha = 0.05$.

The test statistic

$$t = \frac{\mu_1 - \mu_2}{\sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}} = 4.56$$

where $\mu_1 = 107$, $s_1 = 10$, $n_1 = 16$, $\mu_2 = 112$, $s_2 = 8$, $n_2 = 14$.

The critical value is $t_{cr} = t_{0.995;28} = 2.76$ for $\alpha = 0.01$, and $t_{cr} = t_{0.975;28} = 2.05$ for $\alpha = 0.05$. Since in both cases $|t| > t_{cr}$ then we reject the null hypothesis H_0 and we conclude that there a significant difference between IQs of the two groups at significance level of 0.01 and 0.05.