Answer on Question \#78913 - Math - Statistics and Probability

Question

A group of 25 students took examinations in both pure mathematics and statistics. Their marks out of 150 in mathematics, x, and in statistics, y, were recorded and are summarized below.

$$
\Sigma x=1978, \Sigma x 2=175840 \Sigma y=2123 \Sigma y 2=202257 \Sigma x y=181572
$$

I. Calculate Sxx, Syy and Sxy.
II. Find the product moment correlation coefficient between the marks in pure Mathematics and Statistics.
III. Starting your hypotheses clearly tests, at the 5% level of significance, whether or not there is evidence of a correlation.
IV. State an assumption needed for the test in part (iii) to be valid.

Solution

We have:

$$
\begin{aligned}
& \sum x=1978, \sum x^{2}=175840 \\
& \sum y=2123, \sum y^{2}=202257 \\
& \sum x y=181572
\end{aligned}
$$

1. $S_{x x}=\sum(x-\bar{x})^{2}=\sum x_{i}^{2}-\frac{\left(\sum x_{i}\right)^{2}}{n}=175840-\frac{1978^{2}}{25}=19340.64$

$$
\begin{aligned}
& S_{y y}=\sum(y-\bar{y})^{2}=\sum y_{i}^{2}-\frac{\left(\sum y_{i}\right)^{2}}{n}=202257-\frac{2123^{2}}{25}=21971.84 \\
& \quad S_{x y}=\sum(x-\bar{x})(y-\bar{y})=\sum x_{i} y_{i}-\frac{\sum x_{i} \sum y_{i}}{n}=181572-\frac{1978 * 2123}{25} \\
& =13600.24
\end{aligned}
$$

II. $\quad r_{x y}=\frac{s_{x y}}{\sqrt{S_{x x} s_{y y}}}=\frac{13600.24}{\sqrt{19340.64 * 21971.84}}=0.6597$
III. $H_{0}: p=0$
$H_{1}: p \neq 0$, where p is the population correlation coefficient.
IV. Calculate the value of the test statistic using the following formula:

$$
t^{*}=\frac{r \sqrt{n-2}}{\sqrt{1-r^{2}}}
$$

$t^{*}=\frac{0.6597 * 23}{0.7515}=20.19$
$t_{0.95,23}=2.06865$
Since $t^{*}>t_{0.95,23}$, we can reject H_{0}. There is sufficient statistical evidence at the $\alpha=$ 0.05 level to conclude that there is a significant linear relationship between x and y .

Answer:

I. $S_{x x}=19340.64$

$$
\begin{gathered}
S_{y y}=21971.84 \\
S_{x y}=13600.24 \\
\text { II. } r_{x y}=0.6597 \\
\text { III. } H_{0}: p=0 \\
H_{1}: p \neq 0,
\end{gathered}
$$

IV. There is sufficient statistical evidence at the $\alpha=0.05$ level to conclude that there is a significant linear relationship between x and y.

