ANSWER on Question \#78911 - Math - Linear Algebra

QUESTION

A firm uses two inputs, K and L to manufacture final product. The price per unit of these inputs are sh. 20 and sh. 4 respectively. What combination of inputs should a firm use to maximize output given that the budget is fixed at $s h .390$?

SOLUTION

Let the manufactory of K produce x units of the finished product, and the manufactory of $L-y$ units.
Then, the total number of products produced is

$$
\operatorname{Units}(x, y)=x+y
$$

According to the problem: the manufacture K pay $s h .20$ for each unit and the manufacture $L-s h .4$.
Then, the total amount of money spent is

$$
\operatorname{Cost}(x, y)=20 x+4 y
$$

By the condition of the task, the amount of money spent is fixed and equal

$$
\operatorname{Cost}(x, y)=390 \rightarrow 20 x+4 y=390
$$

Now we can write the given problem in symbolic form:

$$
\left\{\begin{array}{c}
\max (\operatorname{Cost}(x+y))=\max (x+y) \\
20 x+4 y=390 \\
x \geq 0 \\
y \geq 0 \\
x, y \in \mathbb{N}
\end{array}\right.
$$

Then,

$$
\begin{gathered}
20 x+4 y=390 \rightarrow 4 y=390-20 x \left\lvert\, \div(4) \rightarrow y=\frac{390}{4}-\frac{20 x}{4} \rightarrow y=\frac{195}{2}-5 x\right. \\
\max (x, y)=x+y=\frac{195}{2}-5 x+x=\frac{195}{2}-4 x \rightarrow \max (x, y)=\frac{195}{2}-4 x
\end{gathered}
$$

As we can see,

$$
\max (x, y)=\frac{195}{2}-4 x-\text { decreasing linear function } \forall x \geq 0
$$

Then,

$$
\begin{gathered}
\max (x, y)=\frac{195}{2}-4 x \rightarrow \frac{195}{2}-\text { for } x=0 \\
\left\{\begin{array}{c}
20 x+4 y=390 \\
x=0
\end{array} \rightarrow 4 y=390 \rightarrow y=\frac{195}{2}=97.5\right.
\end{gathered}
$$

But, y is the number of products manufactured, it can only be an integer, so $y=97$.
Conclusion,

$$
\max (\operatorname{Cost}(x, y))=\max (x+y)=97
$$

ANSWER:

$$
\max _{\substack{20 x+4 y=390 \\ x, y \geq 0}}(x+y)=97
$$

