Find the distance of the centre of the circle $x^{2}+y^{2}+z^{2}+x-2 y+2 z=3, \quad 2 x+y+2 z=1$ from the plane $a x+b y+c z=d$ where a, b, c, d are constants and also find the equation of the right circular cylinder whose base curve is the circle obtained above.

Solution:

1.

$$
\begin{aligned}
& x^{2}+y^{2}+z^{2}+x-2 y+2 z=3 \\
& x^{2}+2 \cdot 0.5 \cdot x+0.25+y^{2}-2 y+1+z^{2}+2 z+1-2.25=3 \\
& (x+0.5)^{2}+(y-1)^{2}+(z+1)^{2}=\frac{21}{4}
\end{aligned}
$$

$x^{2}+y^{2}+z^{2}+x-2 y+2 z=3$ is an equation of the sphere with centre in $r_{0}=(-0.5,1,-1)$ and $R=\frac{\sqrt{21}}{2}$.
2. For plane $2 x+y+2 z=1$ normal vector is $v=(2,1,2)$.
3. Centre of the circle $x^{2}+y^{2}+z^{2}+x-2 y+2 z=3, \quad 2 x+y+2 z=1$ lies on radius perpendicular to the plane and can be found from following system:

$$
\begin{aligned}
& \left\{\begin{array}{l}
x_{0}=-0.5+2 \cdot \lambda \\
y_{0}=1+1 \cdot \lambda \\
z_{0}=-1+2 \cdot \lambda \\
2 x_{0}+y_{0}+2 z_{0}=1
\end{array}\right. \\
& \left\{\begin{array}{l}
\lambda=\frac{1}{3} \\
x_{0}=\frac{1}{6} \\
y_{0}=\frac{8}{6} \\
z_{0}=-\frac{2}{6}
\end{array}\right.
\end{aligned}
$$

Distance between centre of sphere and centre of circle: $h=\lambda \cdot \sqrt{2^{2}+1^{2}+2^{2}}=1$
4. Distance of the centre of the circle from the plane $a x+b y+c z=d$ can be found from following expression:

$$
d=\frac{\left|a x_{0}+b y_{0}+c z_{0}-d\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}=\frac{|a+8 b-2 c-6 d|}{6 \sqrt{a^{2}+b^{2}+c^{2}}}
$$

5. Radius of circle: $R_{c}=\sqrt{R^{2}-h^{2}}=\sqrt{\frac{21}{4}-1}=\frac{\sqrt{17}}{2}$
6. Two orthonormal vectors on plane $2 x+y+2 z=1: \quad k=\left(-\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2}\right), \quad l=\left(\frac{\sqrt{2}}{6},-\frac{2 \sqrt{2}}{3}, \frac{\sqrt{2}}{6}\right)$
7. Equation of right cylinder:

$$
r(\varphi, \lambda)=r_{0}+R_{c}(\cos \varphi \cdot k+\sin \varphi \cdot l)+\lambda \cdot v \quad \varphi \in[0 ; 2 \pi) \quad \lambda \in(-\infty ; \infty)
$$

with

$$
\begin{aligned}
& r_{0}=(-0.5,1,-1) \\
& R_{c}=\frac{\sqrt{17}}{2} \\
& k=\left(-\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2}\right), \quad l=\left(\frac{\sqrt{2}}{6},-\frac{2 \sqrt{2}}{3}, \frac{\sqrt{2}}{6}\right) \\
& v=(2,1,2)
\end{aligned}
$$

Answer:

Distance of the centre of the circle from the plane $d=\frac{|a+8 b-2 c-6 d|}{6 \sqrt{a^{2}+b^{2}+c^{2}}}$
Equation of cylinder: $r(\varphi, \lambda)=r_{0}+R_{c}(\cos \varphi \cdot k+\sin \varphi \cdot l)+\lambda \cdot v$ (with the previously mentioned variables)

