Answer on Question \#78892 - Math - Analytic Geometry

Question

Can any conic have its focus lying on the corresponding directrix? Give reasons for your answer.

Solution

You can define conic section as locus of a point which moves so that the ratio of its distance from a given point called focus and a given line called directrix is always constant.
In case of ellipse, this ratio <1, in case of hyperbola, this ratio >1 and in case of parabola, this ratio $=1$.
What happens when focus is on the directrix itself? Consider the following diagram, where F is focus and directrix is line l_{1} so that F lies on it. Consider another line l_{2} passing through F , so that it forms an angle of θ with l_{1}.

Now consider any other point on l_{2}. Observe that the ratio of the distance of the point from focus F and directrix l_{1} will always be $\frac{1}{\sin \theta}$. In fact, there could be two lines as distance is scalar and independent of sign and two lines with angles θ as well as $\left(180^{\circ}-\theta\right)$ will both have the same ratio.
Hence such a conic section will be a pair of lines.

Answer: Yes, such a conic section will be a pair of lines.
Answer provided by https://www.AssignmentExpert.com

