Answer on Question \#78890 - Math - Analytic Geometry

Question

A rotating liquid forms a surface in the form of a paraboloid. The surface is 2 m deep at the centre and 10 m across. Obtain an equation of the surface.

Solution

The paraboloid which has radius a at height h is then given parametrically by $x(u, \theta)=a \sqrt{u / h} \cos \theta$
$y(u, \theta)=a \sqrt{u / h} \sin \theta$
$z(u, \theta)=u$
$x^{2}+y^{2}=a^{2}\left(\frac{u}{h}\right) \cos ^{2} \theta+a^{2}\left(\frac{u}{h}\right) \sin ^{2} \theta=a^{2}\left(\frac{u}{h}\right)$
The equation of the surface

$$
\begin{gathered}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}}=\frac{z}{h} \\
\frac{x^{2}}{2^{2}}+\frac{y^{2}}{2^{2}}=\frac{z}{10} \\
\frac{x^{2}}{4}+\frac{y^{2}}{4}=\frac{z}{10}
\end{gathered}
$$

Answer: $\frac{x^{2}}{4}+\frac{y^{2}}{4}=\frac{z}{10}$.

