Answer on Question \#78889 - Math - Analytic Geometry

Question

Find the equation of the conic of which one focus lies at $(2,1)$ one directrix is $x+y=0$ and it passes through $(1,4)$. Also identify the conic and reduce the conic you obtained above to standard form.
Draw a rough sketch of the conic obtained above.

Solution

Conic is defined as locus of a point moving in a plane such that the ratio of its distance from a fixed point (F) to the fixed straight line is always a constant. This ratio is called as eccentricity.
The distance of point $(1,4)$ from focus at $(2,1)$ is

$$
\sqrt{(1-2)^{2}+(4-1)^{2}}=\sqrt{10}
$$

The distance of point $(1,4)$ from directrix $x+y=0$ is

$$
\frac{|1+4|}{\sqrt{(1)^{2}+(1)^{2}}}=\frac{5 \sqrt{2}}{2}
$$

Find the eccentricity

$$
e=\frac{\sqrt{10}}{\frac{5 \sqrt{2}}{2}}=\frac{2 \sqrt{5}}{5}<1
$$

Hence we have the ellipse.
The distance from an arbitrary point (x, y) to the focus $(2,1)$

$$
\sqrt{(x-2)^{2}+(y-1)^{2}}
$$

The distance of the point (x, y) from directrix $x+y=0$

$$
\frac{|x+y|}{\sqrt{(1)^{2}+(1)^{2}}}=\frac{|x+y|}{\sqrt{2}}
$$

The eccentricity

$$
\begin{gathered}
e=\frac{\sqrt{(x-2)^{2}+(y-1)^{2}}}{\frac{|x+y|}{\sqrt{2}}}=\frac{2 \sqrt{5}}{5} \\
(x-2)^{2}+(y-1)^{2}=\frac{2}{5}(x+y)^{2} \\
x^{2}-4 x+4+y^{2}-2 y+1=\frac{2}{5} x^{2}+\frac{4}{5} x y+\frac{2}{5} y^{2} \\
\frac{3}{5} x^{2}-\frac{4}{5} x y+\frac{3}{5} y^{2}-4 x-2 y+5=0 \\
3 x^{2}-4 x y+3 y^{2}-20 x-10 y+25=0
\end{gathered}
$$

$A=3, B=-4, C=3, D=-20, E=-2, F=25$

$$
\cot (2 \theta)=\frac{A-C}{B}=\frac{3-3}{-4}=0 \Rightarrow \theta=45^{\circ}
$$

$x=x^{\prime} \cos \theta-y^{\prime} \sin \theta$
$y=x^{\prime} \sin \theta+y^{\prime} \cos \theta$
$x=x^{\prime} \frac{\sqrt{2}}{2}-y^{\prime} \frac{\sqrt{2}}{2}$
$y=x^{\prime} \frac{\sqrt{2}}{2}+y^{\prime} \frac{\sqrt{2}}{2}$
$3\left(x^{\prime} \frac{\sqrt{2}}{2}-y^{\prime} \frac{\sqrt{2}}{2}\right)^{2}-4\left(x^{\prime} \frac{\sqrt{2}}{2}-y^{\prime} \frac{\sqrt{2}}{2}\right)\left(x^{\prime} \frac{\sqrt{2}}{2}+y^{\prime} \frac{\sqrt{2}}{2}\right)+$

$$
\begin{aligned}
& +3\left(x^{\prime} \frac{\sqrt{2}}{2}+y^{\prime} \frac{\sqrt{2}}{2}\right)^{2}-20\left(x^{\prime} \frac{\sqrt{2}}{2}-y^{\prime} \frac{\sqrt{2}}{2}\right)-10\left(x^{\prime} \frac{\sqrt{2}}{2}+y^{\prime} \frac{\sqrt{2}}{2}\right)+25=0 \\
& 3\left(\frac{\left(x^{\prime}\right)^{2}}{2}-x^{\prime} y^{\prime}+\frac{\left(y^{\prime}\right)^{2}}{2}\right)-4\left(\frac{\left(x^{\prime}\right)^{2}}{2}-\frac{\left(y^{\prime}\right)^{2}}{2}\right)+3\left(\frac{\left(x^{\prime}\right)^{2}}{2}+x^{\prime} y^{\prime}+\frac{\left(y^{\prime}\right)^{2}}{2}\right)- \\
& -10 \sqrt{2} x^{\prime}+10 \sqrt{2} y^{\prime}-5 \sqrt{2} x^{\prime}-5 \sqrt{2} y^{\prime}+25=0 \\
& \left(x^{\prime}\right)^{2}-15 \sqrt{2} x^{\prime}+5\left(y^{\prime}\right)^{2}+5 \sqrt{2} y^{\prime}+25=0 \\
& \left(x^{\prime}\right)^{2}-2\left(\frac{15 \sqrt{2}}{2}\right) x^{\prime}+\frac{225}{2}-\frac{225}{2}+5\left(\left(y^{\prime}\right)^{2}+2\left(\frac{5 \sqrt{2}}{2}\right) y^{\prime}+\frac{25}{2}-\frac{25}{2}\right)+25= \\
& =0 \\
& \left(x^{\prime}-\frac{15 \sqrt{2}}{2}\right)^{2}+5\left(y^{\prime}+\frac{5 \sqrt{2}}{2}\right)^{2}=150 \\
& \left(x^{\prime}-\frac{15 \sqrt{2}}{2}\right)^{2} \\
& (5 \sqrt{6})^{2}
\end{aligned}+\frac{\left(y^{\prime}+\frac{5 \sqrt{2}}{2}\right)^{2}}{(\sqrt{30})^{2}}=18
$$

