Question. If $G=\langle x\rangle$ is of order 25 , then x^{a} generates G, where a is a factor of 25 . State whether the given statement is true or false, give reasons for your answer.

Solution. If we interpret the statement as "for every integer a that is a factor of $25, x^{a}$ generates $G, "$ then the statement is false.

Let $a=5$ which is a factor of 25 . We will prove that some element of G is not in $\left\langle x^{a}\right\rangle$. Every element of $\left\langle x^{a}\right\rangle$ is of the form $\left(x^{a}\right)^{n}$ for some integer n. We can divide n by 5, so there are integers q and r such that $n=5 q+r$ and $0 \leq r<5$. We have

$$
\left(x^{a}\right)^{n}=x^{a n}=x^{5(5 q+r)}=\left(x^{q}\right)^{25} x^{5 r}=x^{5 r} ;
$$

$\left(x^{q}\right)^{25}=e$ because the order of every element of G divides 25 . Hence $\left\langle x^{a}\right\rangle=$ $\left\{x^{0}, x^{5}, x^{10}, x^{15}, x^{20}\right\}$, and this set contains at most 5 elements. However, G contains 25 elements. Hence some element of G is not in $\left\langle x^{a}\right\rangle$.

Answer. The statement is false.

