Answer on Question \#78762 - Math - Analytic Geometry

Question

$a x^{\wedge} 2+b y^{\wedge} 2+c z^{\wedge} 2=d$ represents a sphere with radius $V\left(a^{\wedge} 2+b^{\wedge} 2+c^{\wedge} 2-d\right)$ where a, b, c, d are positive real numbers. Is the statement true? Give reason for your answers either with a short proof or a counterexample.

Solution

If we divide the right and left sides of equation by d it will become

$$
\begin{gathered}
\frac{a}{d} x^{2}+\frac{b}{d} y^{2}+\frac{c}{d} z^{2}=1 \\
\frac{x^{2}}{m}+\frac{y^{2}}{n}+\frac{z^{2}}{p}=1
\end{gathered}
$$

We can see the canonical equation of ellipsoid, where m, n, p are also real positive numbers, they are called semiaxis of ellipsoid. Sphere is a particular case of an ellipsoid, when $m=n=p$. But it wasn't stated that $a=b=c$, so we can't say that $\frac{a}{d}=\frac{b}{d}=\frac{c}{d}$, so the statement is incorrect. But if $a=b=c$ the radius of the sphere will be $\sqrt{\frac{d}{a^{\prime}}}$, so in any way the statement is incorrect.

Answer: statement is incorrect.

