Answer on Question #78753 - Math - Abstract Algebra June 30, 2018

Question. Let G be a group, $H \trianglelefteq G$ and $\beta \le (G/H)$. Let $A = \{x \in G \mid Hx \in \beta\}$. Show that

- 1. $A \leq G$,
- 2. $H \leq A$,
- 3. $\beta = (A/H).$

Answer.

- 1. We will show that A is closed under group operations of G.
 - Let $x, y \in A$. Then $Hx, Hy \in \beta$ by the definition of A. As $\beta \leq (G/H), HxHy \in \beta$. As $H \trianglelefteq G, HxHy = HHxy = Hxy$. Hence $xy \in A$ by the definition of A.
 - As $He \in \beta$, $e \in A$.
 - Let $x \in A$. Then $Hx \in \beta$ by the definition of A. As $\beta \leq (G/H)$, $x^{-1}H = x^{-1}H^{-1} = (Hx)^{-1} \in \beta$. As $H \leq G$, $x^{-1}H = Hx^{-1}$. Hence $x^{-1} \in A$ by the definition of A.
- 2. Let $x \in A$. Then $x \in G$, and xH = Hx because H is normal in G. Therefore, H is normal in A.
- 3. We know that $(A/H) = \{Hx \mid x \in A\}$. We will prove $\beta = (A/H)$ which is equivalent to

$$x' \in \beta \iff x' \in (A/H)$$

for every $x' \in (G/H)$.

- (\implies) Let $x' \in \beta$. Then x' = Hx for some $x \in G$ because $\beta \leq (G/H)$. Then $x \in A$ by the definition of A. Therefore, $x' \in (A/H)$ by the definition of (A/H).
- (\Leftarrow) Let $x' \in (A/H)$. Then x' = Hx for some $x \in A$ by the definition of (A/H). Therefore, $x' \in \beta$ by the definition of A.