Answer on Question \#78657 - Math - Analytic Geometry

Question

Obtain the equation of the parabola with focus $(3,2)$ and directrix $3 x-4 y+9=0$.

Solution

Parabolas are commonly known as the graphs of quadratic functions. They can also be viewed as the set of all points whose distance from a certain point (the focus) is equal to their distance from a certain line (the directrix).

Given the focus and the directrix of a parabola, we can find the parabola's equation. Using the distance formula, we find that the distance between the point (x, y) on parabola and the point $\left(x_{F}, y_{F}\right)$ of focus is

$$
d_{F}=\sqrt{\left(x-x_{F}\right)^{2}+\left(y-y_{F}\right)^{2}}
$$

On the other hand, the distance between the point (x, y) on parabola and the directrix
$a x+b y+c=0$ is (as the distance between point and line)

$$
d_{D}=\frac{|a x+b y+c|}{\sqrt{a^{2}+b^{2}}} .
$$

So for parabola we have the equation

$$
\begin{gathered}
d_{F}=d_{D} ; \text { or } d_{F}^{2}=d_{D}^{2} \\
\left(x-x_{F}\right)^{2}+\left(y-y_{F}\right)^{2}=\frac{(a x+b y+c)^{2}}{a^{2}+b^{2}}
\end{gathered}
$$

Solving this equation, we can get the parabola. In our case

$$
\begin{gathered}
\left(x_{F}, y_{F}\right)=(3,2) ; \\
a=3 ; b=-4 ; c=9 .
\end{gathered}
$$

Therefore, we have

$$
\begin{gathered}
(x-3)^{2}+(y-2)^{2}=\frac{(3 \mathrm{x}-4 \mathrm{y}+9)^{2}}{3^{2}+4^{2}} ; \\
x^{2}-6 x+9+y^{2}-4 y+4=\frac{9 x^{2}+16 y^{2}+81-12 x y+27 x-12 x y-36 y+27 x-36 y}{25} ; \\
25 x^{2}+25 y^{2}-150 x-100 y+325=9 x^{2}+16 y^{2}-24 x y+54 x-72 y+81 \\
16 x^{2}+24 x y+9 y^{2}-204 x-28 y+244=0 .
\end{gathered}
$$

We get the implicit equation of a parabola defined by an irreducible polynomial of degree two.
Answer: the equation of the parabola is

$$
16 x^{2}+24 x y+9 y^{2}-204 x-28 y+244=0
$$

The graph of the directrix, focus and our parabola is shown below

