Answer on Question \#78655 - Math - Analytic Geometry

Question

Find the equations of those tangent planes to the sphere $x^{2}+y^{2}+z^{2}+2 x-4 y+6 z-7=$ 0 which intersect in the line $6 x-3 y-23=0,3 z+2=0$.

Solution

Let the tangent line be $A x+B y+C z+D=0$. Two easy points on the required line are $\left(0,-\frac{23}{3},-\frac{2}{3}\right),\left(\frac{23}{6}, 0,-\frac{2}{3}\right)$.

For these to lie in the plane $A x+B y+C z+D=0$ we require

$$
\left\{\begin{array}{c}
23 A-4 C+6 D=0 \\
-46 B-4 C+6 D=0
\end{array}\right.
$$

Subtracting gives us $A=-2 B$, and we also have $3 D=23 B+2 C$.
The equation of the sphere can be rewritten in the following way

$$
(x+1)^{2}+(y-2)^{2}+(z+3)^{2}=21
$$

so it has centre $(-1,2,-3)$ and radius $\sqrt{21}$.
The centre must be a distance $\sqrt{21}$ from the tangent plane. Using the equation for the distance from a point to a plane we have

$$
\frac{|-A+2 B-3 C+D|}{\sqrt{A^{2}+B^{2}+C^{2}}}=\sqrt{21}
$$

Substituting the earlier relations for A and D we get

$$
\begin{gathered}
\left(4 B-3 C+\frac{23}{3} B+\frac{2}{3} C\right)^{2}=21\left(5 B^{2}+C^{2}\right) \\
49\left(\frac{5}{3} B-\frac{1}{3} C\right)^{2}=21\left(5 B^{2}+C^{2}\right) \\
(4 B+C)(B-2 C)=0
\end{gathered}
$$

So

$$
\left[\begin{array}{c}
C=\frac{1}{2} B \\
C=-4 B
\end{array}\right.
$$

Therefore, one plane is $B=2, C=1, A=-4, D=16$ or $4 x-2 y-z=16$ and the other plane is $B=1, C=-4, A=-2, D=5$ or $2 x-y+4 z=5$.

Answer: $4 x-2 y-z=16$ and $2 x-y+4 z=5$.

