Answer on Question \#78623 - Math - Analytic Geometry

Question

If $x / 1=y / 1=z /-1$ represents one of the three mutually perpendicular generators of the cone $3 x y+8 x z-5 y z=0$, find the equations of the other two.

Solution

Cone:

$$
C \rightarrow a x^{2}+b y^{2}+c z^{2}+2 f y z+2 g z x+2 h x y=0
$$

One of its generators:

$$
L_{1} \rightarrow \frac{x}{l}=\frac{y}{m}=\frac{z}{n}
$$

Then L_{1} must satisfy

$$
a x^{2}+b m^{2}+c n^{2}+2 f m n+2 g n l+2 h l m=0
$$

Now the plane $\Pi \rightarrow\left\langle p-p_{0}, \vec{v}\right\rangle$ with

$$
\begin{gathered}
p_{0}=(0,0,0) \\
p=(x, y, z) \\
\vec{v}=(l, m, n)
\end{gathered}
$$

is orthogonal to L_{1}
This plane cuts C in two other lines $\left(L_{2}, L_{3}\right)$ such that $L_{2} \perp L_{3}$ if

$$
(a+b+c)\left(l^{2}+m^{2}+n^{2}\right)-C(l, m, n)=0
$$

or

$$
(a+b+c)\left(l^{2}+m^{2}+n^{2}\right)=0
$$

or

$$
a+b+c=0
$$

because $l^{2}+m^{2}+n^{2} \neq 0$
So we have

$$
\begin{gathered}
\vec{v}=(l, m, n)=(1,1,-1) \\
f=-5, g=8, h=3
\end{gathered}
$$

Then solving

$$
\left\{\begin{array}{c}
f y z+g z x+h x y=0 \\
l x+m y+n z=0
\end{array}\right.
$$

we obtain L_{2}, L_{3} as follows

$$
\begin{gathered}
L_{2}=\left\{\begin{array}{c}
x=\frac{z}{3} \\
y=\frac{2}{3} z
\end{array}\right. \\
L_{3}=\left\{\begin{array}{c}
x=5 z \\
y=-4 z
\end{array}\right.
\end{gathered}
$$

