ANSWER on Question #78511 – Math – Differential Equations

QUESTION

Solve

$$\frac{\partial^2 U}{\partial x^2} = 9 \cdot \frac{\partial^2 U}{\partial x^2}$$
1. $U(x, y) = \cos(3x - y)$
2. $U(x, y) = x^2 + y^2$
3. $U(x, y) = \sin(3x - y)$
4. $U(x, y) = e^{-3/pix} \cdot \sin(\pi y)$

SOLUTION

Remarks related to the condition of the problem:

1. We see that the answers are given as functions of two variables - U(x, y). Therefore, the given equation MUST look like this

1.
$$\frac{\partial^2 U}{\partial x^2} = 9 \cdot \frac{\partial^2 U}{\partial y^2}$$
 or 2. $\frac{\partial^2 U}{\partial y^2} = 9 \cdot \frac{\partial^2 U}{\partial x^2}$

For each of these cases, we check the solutions provided.

2. Since there are no boundary conditions, we can not apply the method of separation of variables and reduce this problem to the Sturm-Liouville problem.

3. Variant # 4 for the formula editor looks like

$$U(x,y) = e^{-3/pix} \cdot \sin(\pi y) \to U(x,y) = e^{-\frac{3}{\pi x}} \cdot \sin(\pi y)$$

But I think that should be so

$$U(x,y) = e^{-3/pix} \cdot \sin(\pi y) \rightarrow U(x,y) = e^{-3\pi x} \cdot \sin(\pi y)$$

Therefore, two cases will also be considered.

We will use this method of solution: we calculate all the partial derivatives and substitute them in the original equation. If equality holds, then it is a solution for us.

1 CASE:

$$\frac{\partial^2 U}{\partial x^2} = 9 \cdot \frac{\partial^2 U}{\partial y^2}$$

1. $U(x, y) = \cos(3x - y)$

$$U(x,y) = \cos(3x - y) \rightarrow \begin{cases} \frac{\partial U}{\partial x} = -3\sin(3x - y)\\ \frac{\partial^2 U}{\partial x^2} = -9\cos(3x - y)\\ \frac{\partial U}{\partial y} = \sin(3x - y)\\ \frac{\partial^2 U}{\partial y^2} = -\cos(3x - y) \end{cases}$$

Then,

$$\begin{cases} \frac{\partial^2 U}{\partial x^2} = -9\cos(3x - y)\\ 9 \cdot \frac{\partial^2 U}{\partial y^2} = 9 \cdot \left[-\cos(3x - y)\right] = -9\cos(3x - y) \end{cases} \rightarrow \frac{\partial^2 U}{\partial x^2} = 9 \cdot \frac{\partial^2 U}{\partial y^2}$$

Conclusion,

 $U(x,y) = \cos(3x - y) - is$ solution of the given equation

2. $U(x, y) = x^2 + y^2$

$$U(x,y) = x^{2} + y^{2} \rightarrow \begin{cases} \frac{\partial U}{\partial x} = 2x\\ \frac{\partial^{2} U}{\partial x^{2}} = 2\\ \frac{\partial U}{\partial y} = 2y\\ \frac{\partial^{2} U}{\partial y^{2}} = 2\end{cases}$$

Then,

$$\begin{cases} \frac{\partial^2 U}{\partial x^2} = 2\\ 9 \cdot \frac{\partial^2 U}{\partial y^2} = 9 \cdot 2 = 18 \end{cases} \rightarrow \frac{\partial^2 U}{\partial x^2} = 2 \neq 18 = 9 \cdot \frac{\partial^2 U}{\partial y^2}$$

Conclusion,

$$U(x,y) = x^2 + y^2 - is not solution of the given equation$$

 $3. U(x, y) = \sin(3x - y)$

$$U(x,y) = \sin(3x - y) \rightarrow \begin{cases} \frac{\partial U}{\partial x} = 3\cos(3x - y)\\ \frac{\partial^2 U}{\partial x^2} = -9\sin(3x - y)\\ \frac{\partial U}{\partial y} = -\cos(3x - y)\\ \frac{\partial^2 U}{\partial y^2} = -\sin(3x - y) \end{cases}$$

Then,

$$\begin{cases} \frac{\partial^2 U}{\partial x^2} = -9\sin(3x - y)\\ 9 \cdot \frac{\partial^2 U}{\partial y^2} = 9 \cdot \left[-\sin(3x - y)\right] = -9\sin(3x - y) \end{cases} \rightarrow \frac{\partial^2 U}{\partial x^2} = 9 \cdot \frac{\partial^2 U}{\partial y^2}$$

Conclusion,

4.A.
$$U(x, y) = e^{-3\pi x} \cdot \sin(\pi y)$$

$$U(x,y) = e^{-3\pi x} \cdot \sin(\pi y) \rightarrow \begin{cases} \frac{\partial U}{\partial x} = -3\pi \cdot e^{-3\pi x} \cdot \sin(\pi y) \\ \frac{\partial^2 U}{\partial x^2} = 9\pi^2 \cdot e^{-3\pi x} \cdot \sin(\pi y) \\ \frac{\partial U}{\partial y} = \pi \cdot e^{-3\pi x} \cdot \cos(\pi y) \\ \frac{\partial^2 U}{\partial y^2} = -\pi^2 \cdot e^{-3\pi x} \cdot \sin(\pi y) \end{cases}$$

$$\begin{cases} \frac{\partial^2 U}{\partial x^2} = 9\pi^2 \cdot e^{-3\pi x} \cdot \sin(\pi y) \\ 9 \cdot \frac{\partial^2 U}{\partial y^2} = 9 \cdot \left[-\pi^2 \cdot e^{-3\pi x} \cdot \sin(\pi y) \right] = -9\pi^2 \cdot e^{-3\pi x} \cdot \sin(\pi y) \end{cases} \xrightarrow{\rightarrow} \\ \frac{\partial^2 U}{\partial x^2} = 9\pi^2 \cdot e^{-3\pi x} \cdot \sin(\pi y) \neq -9\pi^2 \cdot e^{-3\pi x} \cdot \sin(\pi y) = 9 \cdot \frac{\partial^2 U}{\partial y^2} \end{cases}$$

Conclusion,

 $U(x, y) = e^{-3\pi x} \cdot \sin(\pi y) - is \text{ not solution of the given equation}$

4.B.
$$U(x, y) = e^{-\frac{3}{\pi x}} \cdot \sin(\pi y)$$

$$U(x,y) = e^{-\frac{3}{\pi x}} \cdot \sin(\pi y) \rightarrow \begin{cases} \frac{\partial U}{\partial x} = \frac{3}{\pi x^2} \cdot e^{-\frac{3}{\pi x}} \cdot \sin(\pi y) \\ \frac{\partial^2 U}{\partial x^2} = -\frac{6}{\pi x^3} \cdot e^{-\frac{3}{\pi x}} \cdot \sin(\pi y) + \frac{9}{\pi^2 \cdot x^4} \cdot e^{-\frac{3}{\pi x}} \cdot \sin(\pi y) \\ \frac{\partial U}{\partial y} = \pi \cdot e^{-\frac{3}{\pi x}} \cdot \cos(\pi y) \\ \frac{\partial^2 U}{\partial y^2} = -\pi^2 \cdot e^{-\frac{3}{\pi x}} \cdot \sin(\pi y) \end{cases}$$

$$\begin{cases} \frac{\partial^2 U}{\partial x^2} = \left(\frac{9}{\pi^2 x^4} - \frac{6}{\pi x^3}\right) \cdot e^{-\frac{3}{\pi x}} \cdot \sin(\pi y) \\ 9 \cdot \frac{\partial^2 U}{\partial y^2} = 9 \cdot \left[-\pi^2 \cdot e^{-\frac{3}{\pi x}} \cdot \sin(\pi y)\right] = -9\pi^2 \cdot e^{-\frac{3}{\pi x}} \cdot \sin(\pi y) \end{cases} \xrightarrow{\rightarrow} \\ \frac{\partial^2 U}{\partial x^2} = \left(\frac{9}{\pi^2 x^4} - \frac{6}{\pi x^3}\right) \cdot e^{-\frac{3}{\pi x}} \cdot \sin(\pi y) \neq -9\pi^2 \cdot e^{-\frac{3}{\pi x}} \cdot \sin(\pi y) = 9 \cdot \frac{\partial^2 U}{\partial y^2} \end{cases}$$

Conclusion,

 $U(x,y) = e^{-\frac{3}{\pi x}} \cdot \sin(\pi y) - is \text{ not solution of the given equation}$

2 CASE:

$$\frac{\partial^2 U}{\partial y^2} = 9 \cdot \frac{\partial^2 U}{\partial x^2}$$

1. $U(x, y) = \cos(3x - y)$

$$U(x,y) = \cos(3x - y) \rightarrow \begin{cases} \frac{\partial U}{\partial x} = -3\sin(3x - y)\\ \frac{\partial^2 U}{\partial x^2} = -9\cos(3x - y)\\ \frac{\partial U}{\partial y} = \sin(3x - y)\\ \frac{\partial^2 U}{\partial y^2} = -\cos(3x - y) \end{cases}$$

Then,

$$\begin{cases} \frac{\partial^2 U}{\partial y^2} = -\cos(3x - y) \\ 9 \cdot \frac{\partial^2 U}{\partial x^2} = 9 \cdot [-9\cos(3x - y)] = -81\cos(3x - y) \end{cases} \rightarrow \frac{\partial^2 U}{\partial y^2} \neq 9 \cdot \frac{\partial^2 U}{\partial x^2} \end{cases}$$

Conclusion,

 $U(x, y) = \cos(3x - y) - is not solution of the given equation$

2. $U(x, y) = x^2 + y^2$

$$U(x, y) = x^{2} + y^{2} \rightarrow \begin{cases} \frac{\partial U}{\partial x} = 2x\\ \frac{\partial^{2}U}{\partial x^{2}} = 2\\ \frac{\partial U}{\partial y} = 2y\\ \frac{\partial^{2}U}{\partial y^{2}} = 2\end{cases}$$

Then,

$$\begin{cases} \frac{\partial^2 U}{\partial y^2} = 2\\ 9 \cdot \frac{\partial^2 U}{\partial x^2} = 9 \cdot 2 = 18 \end{cases} \rightarrow \frac{\partial^2 U}{\partial y^2} = 2 \neq 18 = 9 \cdot \frac{\partial^2 U}{\partial x^2}$$

Conclusion,

$$U(x,y) = x^2 + y^2 - is not solution of the given equation$$

 $3. U(x, y) = \sin(3x - y)$

$$U(x,y) = \sin(3x - y) \rightarrow \begin{cases} \frac{\partial U}{\partial x} = 3\cos(3x - y) \\ \frac{\partial^2 U}{\partial x^2} = -9\sin(3x - y) \\ \frac{\partial U}{\partial y} = -\cos(3x - y) \\ \frac{\partial^2 U}{\partial y^2} = -\sin(3x - y) \end{cases}$$

Then,

$$\begin{cases} \frac{\partial^2 U}{\partial y^2} = -\sin(3x - y) \\ 9 \cdot \frac{\partial^2 U}{\partial x^2} = 9 \cdot \left[-9\sin(3x - y)\right] = -81\sin(3x - y) \end{cases} \rightarrow \frac{\partial^2 U}{\partial y^2} \neq 9 \cdot \frac{\partial^2 U}{\partial x^2} \end{cases}$$

Conclusion,

4.A.
$$U(x, y) = e^{-3\pi x} \cdot \sin(\pi y)$$

$$U(x,y) = e^{-3\pi x} \cdot \sin(\pi y) \rightarrow \begin{cases} \frac{\partial U}{\partial x} = -3\pi \cdot e^{-3\pi x} \cdot \sin(\pi y) \\ \frac{\partial^2 U}{\partial x^2} = 9\pi^2 \cdot e^{-3\pi x} \cdot \sin(\pi y) \\ \frac{\partial U}{\partial y} = \pi \cdot e^{-3\pi x} \cdot \cos(\pi y) \\ \frac{\partial^2 U}{\partial y^2} = -\pi^2 \cdot e^{-3\pi x} \cdot \sin(\pi y) \end{cases}$$

$$\begin{cases} \frac{\partial^2 U}{\partial y^2} = -\pi^2 \cdot e^{-3\pi x} \cdot \sin(\pi y) \\ 9 \cdot \frac{\partial^2 U}{\partial x^2} = 9 \cdot \left[9\pi^2 \cdot e^{-3\pi x} \cdot \sin(\pi y)\right] = 81\pi^2 \cdot e^{-3\pi x} \cdot \sin(\pi y) \\ \frac{\partial^2 U}{\partial y^2} = -\pi^2 \cdot e^{-3\pi x} \cdot \sin(\pi y) \neq 81\pi^2 \cdot e^{-3\pi x} \cdot \sin(\pi y) = 9 \cdot \frac{\partial^2 U}{\partial x^2} \end{cases}$$

Conclusion,

 $U(x, y) = e^{-3\pi x} \cdot \sin(\pi y) - is \text{ not solution of the given equation}$

4.B.
$$U(x, y) = e^{-\frac{3}{\pi x}} \cdot \sin(\pi y)$$

$$U(x,y) = e^{-\frac{3}{\pi x}} \cdot \sin(\pi y) \rightarrow \begin{cases} \frac{\partial U}{\partial x} = \frac{3}{\pi x^2} \cdot e^{-\frac{3}{\pi x}} \cdot \sin(\pi y) \\ \frac{\partial^2 U}{\partial x^2} = -\frac{6}{\pi x^3} \cdot e^{-\frac{3}{\pi x}} \cdot \sin(\pi y) + \frac{9}{\pi^2 \cdot x^4} \cdot e^{-\frac{3}{\pi x}} \cdot \sin(\pi y) \\ \frac{\partial U}{\partial y} = \pi \cdot e^{-\frac{3}{\pi x}} \cdot \cos(\pi y) \\ \frac{\partial^2 U}{\partial y^2} = -\pi^2 \cdot e^{-\frac{3}{\pi x}} \cdot \sin(\pi y) \end{cases}$$

$$\begin{cases} \frac{\partial^2 U}{\partial y^2} = -\pi^2 \cdot e^{-\frac{3}{\pi x}} \cdot \sin(\pi y) \\ 9 \cdot \frac{\partial^2 U}{\partial x^2} = 9 \cdot \left[\left(\frac{9}{\pi^2 x^4} - \frac{6}{\pi x^3} \right) \cdot e^{-\frac{3}{\pi x}} \cdot \sin(\pi y) \right] = \left(\frac{81}{\pi^2 x^4} - \frac{54}{\pi x^3} \right) \cdot e^{-\frac{3}{\pi x}} \cdot \sin(\pi y) \\ \frac{\partial^2 U}{\partial y^2} = -\pi^2 \cdot e^{-\frac{3}{\pi x}} \cdot \sin(\pi y) \neq \left(\frac{81}{\pi^2 x^4} - \frac{54}{\pi x^3} \right) \cdot e^{-\frac{3}{\pi x}} \cdot \sin(\pi y) = 9 \cdot \frac{\partial^2 U}{\partial x^2} \end{cases}$$

Conclusion,

$$U(x,y) = e^{-\frac{3}{\pi x}} \cdot \sin(\pi y) - is \text{ not solution of the given equation}$$

ANSWER

if
$$\frac{\partial^2 U}{\partial x^2} = 9 \cdot \frac{\partial^2 U}{\partial x^2} \to \frac{\partial^2 U}{\partial x^2} = 9 \cdot \frac{\partial^2 U}{\partial y^2}$$

Then, solutions are

1.
$$U(x, y) = \cos(3x - y)$$
 and 3. $U(x, y) = \sin(3x - y)$

if
$$\frac{\partial^2 U}{\partial x^2} = 9 \cdot \frac{\partial^2 U}{\partial x^2} \to \frac{\partial^2 U}{\partial y^2} = 9 \cdot \frac{\partial^2 U}{\partial x^2}$$

1.
$$U(x, y) = \cos(3x - y)$$
 and 3. $U(x, y) = \sin(3x - y)$

None of the presented variants is a solution of this equation

Answer provided by https://www.AssignmentExpert.com