Answer on Question \#78477 - Math - Linear Algebra

Question

Give examples, with justification, of the following:
two non-singular 2×2 matrices C and D, with $|C|=V 2|D|$

Solution

Since we have to satisfy only $|C|=\sqrt{2}|D|$, we can choose matrix D arbitrary. Let it be equal to unity matrix E_{2} :

$$
D=E_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Then

$$
|D|=\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|=1
$$

To satisfy the given condition we can create matrix C from matrix D by changing upper left element to $\sqrt{2}$:

$$
C=\left(\begin{array}{cc}
\sqrt{2} & 0 \\
0 & 1
\end{array}\right)
$$

Indeed,

$$
|C|=\left|\begin{array}{cc}
\sqrt{2} & 0 \\
0 & 1
\end{array}\right|=\sqrt{2} \cdot 1=\sqrt{2}=|D|
$$

Answer: $C=\left(\begin{array}{cc}\sqrt{2} & 0 \\ 0 & 1\end{array}\right), D=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.

