Answer on Question \#78476 - Math - Linear Algebra

Question

Give examples, with justification, of the following:
two non-zero, 3×3 matrices A and B , with $|A|=0,|B|=(5 / 7) i$

Solution

If matrix has determinant equal to zero, it can be written in a form with one or more rows or columns filled with zeroes. Let choose A to be

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

To satisfy condition $|B|=(5 / 7) i$ we can choose matrix B to be diagonal with all non-zero elements equal to 1 , except for one, which must be (5/7) i, in order to satisfy the given condition. For example:

$$
B=\left(\begin{array}{ccc}
(5 / 7) i & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Indeed,

$$
|B|=\left|\begin{array}{ccc}
(5 / 7) i & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right|=(5 / 7) i \cdot 1 \cdot 1=(5 / 7) i
$$

Answer: $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right), B=\left(\begin{array}{ccc}(5 / 7) i & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$.

