Answer on Question \#78460 - Math - Algebra

Question

Let $x_{1}, \ldots x_{n} \in \mathbb{R}, n \geq 2$, such that $0<x_{1} \leq x_{2} \leq \ldots \leq x_{n}$, and $\frac{1}{1+x_{1}}+\frac{1}{1+x_{2}}+\ldots+\frac{1}{1+x_{n}}=1$, then show that $\sqrt{x_{1}}+\sqrt{x_{2}}+\ldots+\sqrt{x_{n}} \geq(n-1)\left(\frac{1}{\sqrt{x_{1}}}+\ldots+\frac{1}{\sqrt{x_{n}}}\right)$.

Solution

0) This problem originally appeared on the Vojtěch Jarník Competition, in 2002.
1) Consider a case when $n=2$.
$1=\frac{1}{1+x_{1}}+\frac{1}{1+x_{2}}=\frac{x_{1}+x_{2}+2}{x_{1} x_{2}+x_{1}+x_{2}+1} \Rightarrow x_{1} x_{2}=2-1=1$ $\sqrt{x_{1}}+\sqrt{x_{2}}-\frac{1}{\sqrt{x_{1}}}-\frac{1}{\sqrt{x_{2}}}=\frac{\left(\sqrt{x_{1}} \sqrt{x_{2}}-1\right) \sqrt{x_{1}}+\left(\sqrt{x_{1}} \sqrt{x_{2}}-1\right) \sqrt{x_{2}}}{\sqrt{x_{1}} \sqrt{x_{2}}}=0 \geq 0$.
2) First, assume that $x_{1} \leq 1$ and $i \geq 2$, then $\frac{1}{1+x_{i}} \leq \frac{1}{1+x_{2}}+\ldots+\frac{1}{1+x_{n}} \leq 1-\frac{1}{1+x_{1}}=\frac{x_{1}}{1+x_{1}}=\frac{1}{1+\frac{1}{x_{1}}}$, then $x_{i} \geq 1$, and $x_{i} \geq 1 / x_{1}$.
Next, consider a sequence $a_{i}=\sqrt{x_{i}}+\frac{1}{\sqrt{x_{i}}}=\frac{x_{i}+1}{\sqrt{x_{i}}}$. It is obvious that $0<1 \leq a_{1} \leq a_{2} \leq \ldots \leq a_{n}$ if $1<x_{1} \leq x_{2} \leq \ldots \leq x_{n}$ and $0 \leq a_{1} \leq 1 \leq a_{2} \leq \ldots \leq a_{n}$ if $x_{1} \leq 1 \leq \frac{1}{x_{1}} \leq x_{2} \leq \ldots \leq x_{n}$:

Now, consider a sequence $b_{i}=\frac{1}{1+x_{i}}$. It is obvious that $b_{1} \geq b_{2} \geq \ldots \geq b_{n}>0$.
The Chebyshev's inequality gives that $\sum a_{i} * \sum b_{i} \equiv \sum\left(\sqrt{x_{i}}+\frac{1}{\sqrt{x_{i}}}\right) * 1 \geq n \sum a_{i} b_{i} \equiv n \sum \frac{1}{x_{i}}$. This completes the proof.

The equality holds if and only $a_{i}=a_{1}$ or $b_{i}=b_{1}$. It is easy to see that the latter means that $x_{1}=x_{i}=n-1$. The former yields one more case: $x_{1} \leq 1 \leq \frac{1}{x_{1}}=x_{i}$. Since $1=\frac{1}{1+\frac{1}{x_{2}}}+\frac{(n-1)}{1+x_{2}}=$ $\frac{n-1+x_{2}}{1+x_{2}}$, it follows that $n-1=1$.

Answer:

The statement can be proved using Chebyshev's inequality. The equality holds if and only if $x_{1}=x_{i}=n-1(n \geq 2)$ or $x_{1}<1<\frac{1}{x_{1}}=x_{2}(n=2)$.

