Answer on Question #78460 – Math – Algebra

Question

Let $x_1, \dots x_n \in \mathbb{R}, n \ge 2$, such that $0 < x_1 \le x_2 \le \dots \le x_n$, and $\frac{1}{1+x_1} + \frac{1}{1+x_2} + \dots + \frac{1}{1+x_n} = 1$, then show that $\sqrt{x_1} + \sqrt{x_2} + \dots + \sqrt{x_n} \ge (n-1)\left(\frac{1}{\sqrt{x_1}} + \dots + \frac{1}{\sqrt{x_n}}\right)$.

Solution

0) This problem originally appeared on the Vojtěch Jarník Competition, in 2002.

1) Consider a case when n = 2.

 $1 = \frac{1}{1+x_1} + \frac{1}{1+x_2} = \frac{x_1+x_2+2}{x_1x_2+x_1+x_2+1} \Longrightarrow x_1x_2 = 2 - 1 = 1$ $\sqrt{x_1} + \sqrt{x_2} - \frac{1}{\sqrt{x_1}} - \frac{1}{\sqrt{x_2}} = \frac{(\sqrt{x_1}\sqrt{x_2}-1)\sqrt{x_1}+(\sqrt{x_1}\sqrt{x_2}-1)\sqrt{x_2}}{\sqrt{x_1}\sqrt{x_2}} = 0 \ge 0.$ 2) First, assume that $x_1 \le 1$ and $i \ge 2$, then $\frac{1}{1+x_i} \le \frac{1}{1+x_2} + \dots + \frac{1}{1+x_n} \le 1 - \frac{1}{1+x_1} = \frac{x_1}{1+x_1} = \frac{1}{1+\frac{1}{x_1}}$ then $x_i \ge 1$, and $x_i \ge 1/x_1$.
Next, consider a sequence $a_i = \sqrt{x_i} + \frac{1}{\sqrt{x_i}} = \frac{x_i+1}{\sqrt{x_i}}$. It is obvious that $0 < 1 \le a_1 \le a_2 \le \dots \le a_n$ if $1 < x_1 \le x_2 \le \dots \le x_n$ and $0 \le a_1 \le 1 \le a_2 \le \dots \le a_n$ if $x_1 \le 1 \le \frac{1}{x_1} \le x_2 \le \dots \le x_n$: $\int_{a_1}^{b_2} \frac{1}{a_1} = \frac{1}{1+x_i}$ Now, consider a sequence $b_i = \frac{1}{1+x_i}$. It is obvious that $b_1 \ge b_2 \ge \dots \ge b_n > 0$.

The Chebyshev's inequality gives that $\sum a_i * \sum b_i \equiv \sum \left(\sqrt{x_i} + \frac{1}{\sqrt{x_i}}\right) * 1 \ge n \sum a_i b_i \equiv n \sum \frac{1}{x_i}$. This completes the proof.

The equality holds if and only $a_i = a_1$ or $b_i = b_1$. It is easy to see that the latter means that $x_1 = x_i = n - 1$. The former yields one more case: $x_1 \le 1 \le \frac{1}{x_1} = x_i$. Since $1 = \frac{1}{1 + \frac{1}{x_2}} + \frac{(n-1)}{1 + x_2} = \frac{n - 1 + x_2}{1 + x_2}$, it follows that n - 1 = 1.

Answer:

The statement can be proved using Chebyshev's inequality. The equality holds if and only if $x_1 = x_i = n - 1$ ($n \ge 2$) or $x_1 < 1 < \frac{1}{x_1} = x_2$ (n = 2).